An adaptive liquid lens with controllable light intensity is demonstrated, which can modulate both light intensity and beam spot size. The proposed lens consists of a dyed water solution, a transparent oil, and a transparent water solution. The dyed water solution is used to adjust light intensity distribution by varying the liquid-liquid (L-L) interface. The other two liquids are transparent and designed to control the spot size. In this way, two problems can be solved: the inhomogeneous attenuation of light can be achieved through the dyed layer, and a larger optical power tuning range can be achieved through the two L-L interfaces. Our proposed lens can be used for homogenization effects in laser illumination. In the experiment, an optical power tuning range from - 44.03 m ∼ + 39.42 m and an ∼ 89.84% homogenization level are achieved. Our proposed lens may also ease the vignetting problem in imaging systems.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.492227DOI Listing

Publication Analysis

Top Keywords

light intensity
16
proposed lens
12
water solution
12
adaptive liquid
8
liquid lens
8
lens controllable
8
controllable light
8
spot size
8
dyed water
8
optical power
8

Similar Publications

Background: Understanding the size and surface charge (ζ-potential) of particles in the mixed micellar fraction produced by in vitro digestion is crucial to understand their cellular absorption and transport. The inconsistent presentation of micellar size data, often limited to average particle diameter, makes comparison of studies difficult. The present study aimed to assess different size data representations (mean particle diameter, relative intensity- or volume-weighted size distribution) to better understand physiological mixed micelle characteristics and to provide recommendations for size reporting and sample handling.

View Article and Find Full Text PDF

Unlabelled: Sensory filtering - prioritizing relevant stimuli while ignoring irrelevant ones - is crucial for animals to adapt and survive in complex environments. While this phenomenon has been primarily studied in organisms with complex nervous systems, it remains unclear whether simpler organisms also possess such capabilities. Here, we studied temporal information processing in , a freshwater planarian flatworm with a primitive nervous system.

View Article and Find Full Text PDF

Multiple sclerosis (MS) falls within the spectrum of central nervous system (CNS) demyelinating diseases that may lead to permanent neurological disability. Fundamental to the diagnosis and clinical surveillance is magnetic resonance imaging (MRI) that allows for the identification of T2-hyperintensities associated with autoimmune injury that demonstrate distinct spatial distribution patterns. Here, we describe the clinical experience of a 31-year-old, right-handed, White man seen in consultation at The University of Texas Southwestern Medical Center in Dallas, Texas, following complaints of headaches that began after head trauma related to military service.

View Article and Find Full Text PDF

Photobiomodulation (PBM) therapy stands as an innovative neurostimulation modality that has demonstrated both efficacy and safety in improving brain function. This therapy exerts multifaceted influences on neurons, blood vessels, and their intricate interplay known as neurovascular coupling (NVC). Growing evidence indicates that NVC may present a promising target for PBM intervention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!