Tunable liquid crystal (LC) lenses have gained significant attention in recent decades due to their lightweight, low cost, and versatility in applications such as augmented reality, ophthalmic devices, and astronomy. Although various structures have been proposed to improve the performance of LC lenses, the thickness of the LC cell is a critical design parameter that is often reported without sufficient justification. While increasing the cell thickness can lead to a shorter focal length, it also results in higher material response times and light scattering. To address this issue, the Fresnel structure has been introduced as a solution to achieve a higher focal length dynamic range without increasing the cell thickness. In this study, we numerically investigate, for the first time (to our knowledge) the relationship between the number of phase resets and the minimum required cell thickness to achieve a Fresnel phase profile. Our findings reveal that the diffraction efficiency (DE) of a Fresnel lens also depends on the cell thickness. Specifically, to achieve a fast response Fresnel-structured-based LC lens with high optical transmission and over 90% DE using E7 as the LC material, the cell thickness should fall within the range of 13 to 23 µm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.496135 | DOI Listing |
Langmuir
January 2025
Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science (IISc), Bangalore 560012, India.
The enduring pathogenicity of can be attributed to its lipid-rich cell wall, with mycolic acids (MAs) being a significant constituent. Different MAs' fluidity and structural adaptability within the bacterial cell envelope significantly influence their physicochemical properties, operational capabilities, and pathogenic potential. Therefore, an accurate conformational representation of various MAs in aqueous media can provide insights into their potential role within the intricate structure of the bacterial cell wall.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
Background: Insulin resistance is tightly related to cognition; however, the causal association between them remains a matter of debate. Our investigation aims to establish the causal relationship and direction between insulin resistance and cognition, while also quantifying the mediating role of brain cortical structure in this association.
Methods: The publicly available data sources for insulin resistance (fasting insulin, homeostasis model assessment beta-cell function and homeostasis model assessment insulin resistance, proinsulin), brain cortical structure, and cognitive phenotypes (visual memory, reaction time) were obtained from the MAGIC, ENIGMA, and UK Biobank datasets, respectively.
Front Immunol
January 2025
Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilan-Universität (LMU) Munich, München, Germany.
Introduction: The autoantibody-driven disease pemphigus vulgaris (PV) impairs desmosome adhesion in the epidermis. In desmosomes, the pemphigus autoantigens desmoglein 1 (Dsg1) and Dsg3 link adjacent cells. Dsgs are clustered by plaque proteins and linked to the keratin cytoskeleton by desmoplakin (Dp).
View Article and Find Full Text PDFFront Pharmacol
January 2025
Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
Introduction: Resveratrol, a polyphenolic compound commonly found in natural plants and fruits, exhibits potential in preventing optic nerve damage in glaucoma, as indicated by several animal studies. However, there is presently a dearth of relevant evidence available for comprehensive summarization.
Methods: In this study, we conducted an extensive search across 7 electronic databases, encompassing all pertinent animal studies for a systematic review and meta-analysis.
BMC Plant Biol
January 2025
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia.
Background: The present research work was done to evaluate the anatomical differences among selected species of the family Bignoniaceae, as limited anatomical data is available for this family in Pakistan. Bignoniaceae is a remarkable family for its various medicinal properties and anatomical characterization is an important feature for the identification and classification of plants.
Methodology: In this study, several anatomical structures were examined, including stomata type and shape, leaf epidermis shape, epidermal cell size, and the presence or absence of trichomes and crystals (e.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!