The Fiber SPR chip laboratory has become a popular choice in biochemical detection. To meet the needs of different kinds of analytes for the detection range and number of channels of the chip, we proposed a multi-mode SPR chip laboratory based on microstructure fiber in this paper. The chip laboratory was integrated with microfluidic devices made from PDMS and detection units made of bias three-core fiber and dumbbell fiber. By injecting light into different cores of a bias three-core fiber, different detection areas of dumbbell fiber can be selected, enabling the chip laboratory to enter high refractive index detection, multi-channel detection and other working modes. In the high refractive index detection mode, the chip can detect liquid samples with a refractive index range of 1.571-1.595. In multi-channel detection mode, the chip can achieve dual parameter detection of glucose and GHK-Cu, with sensitivities of 4.16 nm/(mg/mL) and 9.729 nm/(mg/mL), respectively. Additionally, the chip can switch to temperature compensation mode. The proposed multi working mode SPR chip laboratory, based on micro structured fiber, offers a new approach for the development of portable testing equipment that can detect multiple analytes and meet multiple requirements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.493337 | DOI Listing |
Small
January 2025
Department of Chemistry, Fudan University, Shanghai, 200438, China.
Rapid and sensitive detection of Epstein-Barr virus cell-free DNA (EBV cfDNA) is crucial for early diagnosis and monitoring of nasopharyngeal carcinoma (NPC), but accessibility to screening is limited by complicated and costly conventional DNA isolation and purification approaches. Here, a fully integrated ion concentration polarization (ICP)-enriched and nanozyme-catalyzed lateral flow assay (ICP-cLFA) is developed, enabling total analysis of EBV cfDNA in whole blood samples, with DNA isolation, pre-concentration, and amplification performed on a microfluidic chip, consequently providing the signal readout within 75 min. Specifically, ICP preconcentration and amplification steps, together with target recognition catalyzed by a platinum-decorated mesoporous gold nanosphere (MGNS@Pt) nanozyme, result in an ultralow detection limit of 4 aM in standard cfDNA samples and 100 aM in whole blood from NPC-bearing rats.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
Current hydrogel strain sensors have never been integrated into dynamic organ-on-a-chip (OOC) due to the lack of sensitivity in aqueous cell culture systems. To enhance sensing performance, a novel strain sensor is presented in which the MXene layer is coated on the bottom surface of a pre-stretched anti-swelling hydrogel substrate of di-acrylated Pluronic F127 (F127-DA) and chitosan (CS) for isolation from the cell culture on the top surface. The fabricated strain sensors display high sensitivity (gauge factor of 290.
View Article and Find Full Text PDFAnal Chem
January 2025
CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.
Droplet microfluidics is a powerful method for digital droplet polymerase chain reaction (ddPCR) applications. However, precise droplet control, bulky peripherals, and multistep operation usually required in droplet detection process hinder the broad application of ddPCR. Here, a contracted channel droplet reinjection chip is presented, where droplets can be self-separated and detected one by one at intervals.
View Article and Find Full Text PDFSmall
January 2025
Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
A 3D DNA spatial chip (DSC) based on an icosahedral DNA origami framework is introduced to construct customized circular single-stranded DNA (c-ssDNA) for data storage. Within the confined space of the DSC, thirty addressable location sequences extending from the framework edges are available for designing circular paths and directing the assembly of a series of information oligonucleotides for efficient ligation. This strategy is verified by constructing c-ssDNAs from up to 15 fragments to encode two poems (800 and 860 nucleotides).
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Hepatobiliary Surgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China.
Biliary duct injury, biliary atresia (BA), biliary tract tumors, primary sclerosing cholangitis (PSC), and other diseases are commonly encountered in clinical practice within the digestive system. To gain a better understanding of the pathogenesis and development of these diseases and explore more effective treatment methods, organoid technology has recently garnered significant attention. Organoids are three-dimensional structures derived from stem/progenitor cells that can faithfully mimic the intricate structure and physiological function of tissues or organs .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!