The blood-brain barrier (BBB) largely excludes antibodies from entering the central nervous system, thus limiting the potential of therapeutic antibodies to treat conditions such as neurodegenerative diseases and neuro-psychiatric disorders. Here, we demonstrate that the transport of human antibodies across the BBB in mice can be enhanced by modulating their interactions with the neonatal Fc receptor (FcRn). When M252Y/S254T/T246E substitutions are introduced on the antibody Fc domain, immunohistochemical assays reveal widespread distribution of the engineered antibodies throughout the mouse brain. These engineered antibodies remain specific for their antigens and retain pharmacological activity. We propose that novel brain-targeted therapeutic antibodies can be engineered to differentially engage FcRn for receptor-mediated transcytosis across the BBB in order to improve neurological disease therapeutics in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312019PMC
http://dx.doi.org/10.1080/19420862.2023.2229098DOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
8
therapeutic antibodies
8
engineered antibodies
8
antibodies
7
modifying antibody-fcrn
4
antibody-fcrn interactions
4
interactions increase
4
increase transport
4
transport antibodies
4
antibodies blood-brain
4

Similar Publications

Background: Although novel treatments for Alzheimer's disease (AD) have begun to show modest therapeutic effects, agents that target hallmark AD pathology and offer neuroprotection are desired. Erythropoietin (EPO) is a glycoprotein hormone with neuroprotective effects but is faced with challenges including limited brain uptake and increased hematopoietic side effects with long-term dosing. Therefore, EPO has been modified and bound to a chimeric transferrin receptor monoclonal antibody (cTfRMAb); the latter shuttles EPO past the blood-brain barrier (BBB) into brain parenchyma and reduces its plasma exposure and potential for side effects.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Columbia University, New York, NY, USA.

Background: Focused ultrasound (FUS)-induced blood-brain barrier opening (BBBO) is a technique for safely, non-invasively, and transiently opening the blood brain barrier in a targeted area of the brain. Pre-clinical and clinical studies have shown that FUS is capable of decreasing amyloid plaque load and stimulating neurogenesis in Alzheimer's Disease (AD) models, in addition to being safe for use in human patients. However, the effect of FUS-BBBO on neurons has not yet been characterized, despite its crucial role in cognition and regulating brain function.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Patiala, India.

Background: Neuroinflammation plays an important role in progression of Alzheimer's disease (AD). Interlukin-6 (IL-6) is well identified marker in initiating and regulating inflammation, and formation of senile plaques in brain. Therefore, simultaneous inhibition of both IL-6 and acetylcholinesterase (AChE) may be an effective strategy for AD.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

MEPSGEN, Seoul, Korea, Republic of (South).

Background: Impaired Aβ clearance plays a key role in the common, late-onset AD. Anti-Aβ immunotherapies are controversial, in part because of high rates of serious side effects including edema, microhemorrhages, and siderosis, highlighting the importance of the development of alternative Aβ clearance strategy. Here, we introduce a bioinspired nanoparticle named MG-PE3 crossing the human blood-brain barrier (BBB) and clearing Aβ with no adverse effect.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is the leading form of senile dementia, affecting ∼6 million Americans and having a national economic impact of $321 billion, numbers expected to double by 2050. The major pathological hallmarks of AD include Amyloid Beta (Aβ) plaques and Tau neurofibrillary tangles (NFT). The first goal of this research was to develop novel forms of carbon dots (CD) using various precursors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!