A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bivalent mRNA vaccine effectiveness against SARS-CoV-2 variants of concern. | LitMetric

AI Article Synopsis

  • Sequential infections with different SARS-CoV-2 variants demonstrate the need for vaccines that protect against multiple strains, as mutations in the spike protein can impact transmission and vaccine effectiveness.
  • The study created mRNA vaccines targeting wild-type and variant strains and evaluated their neutralizing potential using mouse models, revealing that monovalent vaccines were strain-specific while bivalent vaccines showed broader effectiveness.
  • Findings suggest that combining mRNA sequences in vaccines can enhance protection against various SARS-CoV-2 variants, offering a promising strategy for future vaccine development.

Article Abstract

Background: Sequential infections with SARS-CoV-2 variants such as Alpha, Delta, Omicron and its sublineages may cause high morbidity, so it is necessary to develop vaccines that can protect against both wild-type (WT) virus and its variants. Mutations in SARS-CoV-2's spike protein can easily alter viral transmission and vaccination effectiveness.

Methods: In this study, we designed full-length spike mRNAs for WT, Alpha, Delta, and BA.5 variants and integrated each into monovalent or bivalent mRNA-lipid nanoparticle vaccines. A pseudovirus neutralization assay was conducted on immunized mouse sera in order to examine the neutralizing potential of each vaccine.

Results: Monovalent mRNA vaccines were only effective against the same type of virus. Interestingly, monovalent BA.5 vaccination could neutralize BF.7 and BQ.1.1. Moreover, WT, Alpha, Delta, BA.5, and BF.7 pseudoviruses were broadly neutralized by bivalent mRNA vaccinations, such as BA.5 + WT, BA.5 + Alpha, and BA.5 + Delta. In particular, BA.5 + WT exhibited high neutralization against most variants of concern (VOCs) in a pseudovirus neutralization assay.

Conclusions: Our results show that combining two mRNA sequences may be an effective way to develop a broadly protective SARS-CoV-2 vaccine against a wide range of variant types. Importantly, we provide the optimal combination regimen and propose a strategy that may prove useful in combating future VOCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304269PMC
http://dx.doi.org/10.1186/s12929-023-00936-0DOI Listing

Publication Analysis

Top Keywords

alpha delta
12
bivalent mrna
8
sars-cov-2 variants
8
variants concern
8
delta ba5
8
pseudovirus neutralization
8
variants
5
mrna vaccine
4
vaccine effectiveness
4
effectiveness sars-cov-2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!