A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Three-dimensional printed 316L stainless steel cardiovascular stent's electrolytic polishing and its mechanical properties]. | LitMetric

The interventional therapy of vascular stent implantation is a popular treatment method for cardiovascular stenosis and blockage. However, traditional stent manufacturing methods such as laser cutting are complex and cannot easily manufacture complex structures such as bifurcated stents, while three-dimensional (3D) printing technology provides a new method for manufacturing stents with complex structure and personalized designs. In this paper, a cardiovascular stent was designed, and printed using selective laser melting technology and 316L stainless steel powder of 0-10 µm size. Electrolytic polishing was performed to improve the surface quality of the printed vascular stent, and the expansion behavior of the polished stent was assessed by balloon inflation. The results showed that the newly designed cardiovascular stent could be manufactured by 3D printing technology. Electrolytic polishing removed the attached powder and reduced the surface roughness Ra from 1.36 µm to 0.82 µm. The axial shortening rate of the polished bracket was 4.23% when the outside diameter was expanded from 2.42 mm to 3.63 mm under the pressure of the balloon, and the radial rebound rate was 2.48% after unloading. The radial force of polished stent was 8.32 N. The 3D printed vascular stent can remove the surface powder through electrolytic polishing to improve the surface quality, and show good dilatation performance and radial support performance, which provides a reference for the practical application of 3D printed vascular stent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10307601PMC
http://dx.doi.org/10.7507/1001-5515.202211078DOI Listing

Publication Analysis

Top Keywords

electrolytic polishing
16
vascular stent
16
printed vascular
12
stent
9
316l stainless
8
stainless steel
8
printing technology
8
cardiovascular stent
8
improve surface
8
surface quality
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!