Arrhythmia is a significant cardiovascular disease that poses a threat to human health, and its primary diagnosis relies on electrocardiogram (ECG). Implementing computer technology to achieve automatic classification of arrhythmia can effectively avoid human error, improve diagnostic efficiency, and reduce costs. However, most automatic arrhythmia classification algorithms focus on one-dimensional temporal signals, which lack robustness. Therefore, this study proposed an arrhythmia image classification method based on Gramian angular summation field (GASF) and an improved Inception-ResNet-v2 network. Firstly, the data was preprocessed using variational mode decomposition, and data augmentation was performed using a deep convolutional generative adversarial network. Then, GASF was used to transform one-dimensional ECG signals into two-dimensional images, and an improved Inception-ResNet-v2 network was utilized to implement the five arrhythmia classifications recommended by the AAMI (N, V, S, F, and Q). The experimental results on the MIT-BIH Arrhythmia Database showed that the proposed method achieved an overall classification accuracy of 99.52% and 95.48% under the intra-patient and inter-patient paradigms, respectively. The arrhythmia classification performance of the improved Inception-ResNet-v2 network in this study outperforms other methods, providing a new approach for deep learning-based automatic arrhythmia classification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10307595PMC
http://dx.doi.org/10.7507/1001-5515.202207049DOI Listing

Publication Analysis

Top Keywords

arrhythmia classification
12
improved inception-resnet-v2
12
inception-resnet-v2 network
12
image classification
8
classification method
8
based gramian
8
gramian angular
8
angular summation
8
summation field
8
arrhythmia
8

Similar Publications

Artificial intelligence-based framework for early detection of heart disease using enhanced multilayer perceptron.

Front Artif Intell

January 2025

Department of Computer Science and Artificial Intelligence, College of Computing and Information Technology, University of Bisha, Bisha, Saudi Arabia.

Cardiac disease refers to diseases that affect the heart such as coronary artery diseases, arrhythmia and heart defects and is amongst the most difficult health conditions known to humanity. According to the WHO, heart disease is the foremost cause of mortality worldwide, causing an estimated 17.8 million deaths every year it consumes a significant amount of time as well as effort to figure out what is causing this, especially for medical specialists and doctors.

View Article and Find Full Text PDF

Aims: To investigate if adding ECG abnormalities as a predictor improves the performance of incident CVD-risk prediction models for people with type 2 diabetes (T2D).

Methods: We evaluated the four major prediction models that are recommended by the guidelines of the American College of Cardiology/American Heart Association and European Society of Cardiology, in 11,224 people with T2D without CVD (coronary heart disease, heart failure, stroke, thrombosis) from the Hoorn Diabetes Care System cohort (1998-2018). Baseline measurements included CVD-risk factors and ECG recordings coded according to the Minnesota Classification as no, minor or major abnormalities.

View Article and Find Full Text PDF

A knowledge embedded multimodal pseudo-siamese model for atrial fibrillation detection.

Sci Rep

January 2025

School of Computer Science and Engineering, Changchun University of Technology, Changchun, 130102, People's Republic of China.

Atrial fibrillation (AF) is a common arrhythmia disease with a higher incidence rate. The diagnosis of AF is time-consuming. Although many ECG classification models have been proposed to assist in AF detection, they are prone to misclassifying indistinguishable noise signals, and the context information of long-term signals is also ignored, which impacts the performance of AF detection.

View Article and Find Full Text PDF

Purpose: Catheter ablation (CA) for atrial fibrillation (AF) in heart failure patients with preserved ejection fraction (HFPEF) has shown promising results in reducing mortality and improving heart function. However, previous studies have been limited by a lack of control groups and significant heterogeneity in their methodologies.

Hypothesis: CA for AF in HFPEF patients may not increase the complications and had similarly the rate of freedom from AF vs.

View Article and Find Full Text PDF

Significance: Radiofrequency ablation to treat atrial fibrillation (AF) involves isolating the pulmonary vein from the left atria to prevent AF from occurring. However, creating ablation lesions within the pulmonary veins can cause adverse complications.

Aim: We propose automated classification algorithms to classify optical coherence tomography (OCT) volumes of human venoatrial junctions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!