A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Retinal cell-targeted liposomal ginsenoside Rg3 attenuates retinal ischemia-reperfusion injury via alleviating oxidative stress and promoting microglia/macrophage M2 polarization. | LitMetric

Retinal cell-targeted liposomal ginsenoside Rg3 attenuates retinal ischemia-reperfusion injury via alleviating oxidative stress and promoting microglia/macrophage M2 polarization.

Free Radic Biol Med

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China. Electronic address:

Published: September 2023

Retinal ischemia-reperfusion (RIR) injury remains a major challenge that is detrimental to retinal cell survival in a variety of ocular diseases. However, current clinical treatments focus on a single pathological mechanism, making them unable to provide comprehensive retinal protection. A variety of natural products including ginsenoside Rg3 (Rg3) exhibit potent antioxidant and anti-inflammatory activities. Unfortunately, the hydrophobicity of Rg3 and the presence of various intraocular barriers limit its effective application in clinical settings. Hyaluronic acid (HA)- specifically binds to cell surface receptors, CD44, which is widely expressed in retinal pigment epithelial cells and M1-type macrophage. Here, we developed HA-decorated liposomes loaded with Rg3, termed Rg3@HA-Lips, to protect against retinal damage caused by RIR injury. Treatment with Rg3@HA-Lips significantly inhibited the oxidative stress induced by RIR injury. In addition, Rg3@HA-Lips promoted the transition of M1-type macrophage to the M2 type, ultimately reversing the pro-inflammatory microenvironment. The mechanism of Rg3@HA-Lips was further investigated and found that they can regulateSIRT/FOXO3a, NF-κB and STAT3 signaling pathways. Together with as well demonstrated good safety profiles, this CD44-targeted platform loaded with a natural product alleviates RIR injury by modulating the retinal microenvironment and present a potential clinical treatment strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2023.06.024DOI Listing

Publication Analysis

Top Keywords

rir injury
16
retinal
8
ginsenoside rg3
8
retinal ischemia-reperfusion
8
oxidative stress
8
m1-type macrophage
8
rg3
5
injury
5
retinal cell-targeted
4
cell-targeted liposomal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!