Adding herbicides to sewer lines, a common practice for controlling root intrusion in sewer pipes, may adversely impact downstream wastewater treatment by inhibiting nitrification and denitrification performance. This study investigated the effects of herbicides, namely diquat, triclopyr, and 2-methyl-4-chlorophenoxyacetic acid (MCPA)-dicamba, on these processes. Various parameters were monitored, including oxygen uptake rate (OUR), nutrients (NH-N, TP, NO-N, and NO-N), chemical oxygen demand (COD), and herbicide concentrations. It was found that nitrification was not affected by OUR in the presence of each herbicide at various concentrations (1, 10, and 100 mg L). Additionally, MCPA-dicamba at various concentrations demonstrated minimal inhibition in the nitrification process compared to diquat and triclopyr. COD consumption was not affected by the presence of these herbicides. However, triclopyr significantly inhibited NO-N formation in the denitrification process at various concentrations. Similar to nitrification process, both COD consumption and herbicide reduction concentration were not affected by the presence of herbicides during the denitrification process. Adenosine triphosphate measurements showed minimal impact on nitrification and denitrification processes when herbicides were present in the solution up to a concentration of 10 mg L. Tree root kill efficiency experiments were performed on Acacia melanoxylon. Considering the performance on nitrification and denitrification process, diquat emerged as the best herbicide option (concentration of 10 mg L), with a 91.24% root kill efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.139345 | DOI Listing |
Bioresour Technol
January 2025
Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Educatio, Guizhou University, Guiyang 550025 Guizhou Province, China. Electronic address:
Actinomycetes are essential for sustaining the ecosystem's nitrogen balance and stimulating plant development. In contrast, existing detection and culture techniques for actinomycetes are still limited, making it difficult to fully assess their role in the nitrogen cycle. This review emphasized the advantages of actinomycetes in ecological restoration, outlined the current status and challenges of research on nitrogen cycling by actinomycetes.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Ecology, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, Hainan, China. Electronic address:
The mangrove ecosystems store a significant amount of "blue carbon" to mitigate global climate change, but also serve as hotspots for greenhouse gases (GHGs: CO, CH and NO) production. The CH and NO emissions offset mangrove carbon benefits, however, the extent of this effect remains inadequately quantified. By applying the 36 h time-series observations and mapping cruises, here we investigated the spatial and temporal distribution of GHGs and their fluxes in Dongzhaigang (DZG) bay, the largest mangrove ecosystem in China, at tidal and monthly scales.
View Article and Find Full Text PDFBioresour Technol
January 2025
School of Environment and Climate, Guangdong Engineering Research Center of Water Treatment Processes and Materials, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
Efficient nitrogen removal after organic capture is challenging through conventional nitrification-denitrification process. Two biofilm-based anoxic/oxic reactors, with a single intermittent zone (R1) or dual intermittent zones (R2), were compared in treating carbon-limited wastewater. Intermittent aeration integrated partial nitrification-anammox (PNA), partial denitrification-anammox (PDA), and denitrification, with anammox-related pathways contributing over 75% nitrogen removal in both reactors.
View Article and Find Full Text PDFBioresour Technol
January 2025
Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy. Electronic address:
In this work, the effect of the electro-assisted Fenton (EAF) process on the bacterial community of a moving bed biofilm reactor (MBBR) for olive mill wastewater (OMW) co-treatment with urban wastewater (UWW) was investigated. According to metagenomic analysis, pre-treatment by EAF, while removing total phenols (TPHs) up to 84 % ± 3 % and improving biodegradability of OMW from 0.38 to 0.
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Life Science, Northeast Agricultural University, Harbin 150030, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China. Electronic address:
This research evaluated how addition of biochar and zeolite affected nitrogen transformation and retention during the composting of kitchen waste. Four treatments, control (CK), 10 % biochar (B), 10 % zeolite (Z), and 5 % biochar +5 % zeolite (BZ) were used to study nitrogen transformation and retention. The results showed that biochar and zeolite can significantly reduce the loss of NH-N during the thermophilic phase (CK: 42.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!