Drinking water treatment plants (DWTPs) are intended to provide safe water to the municipality, typically by treating surface waters from rivers, lakes, and streams. Regrettably, all of these water sources for DWTPs have been reported to be contaminated by microplastics (MPs). Hence, there is an urgent need to investigate the removal efficiencies of MPs from raw waters in the conventional DWTPs anticipating public health concerns. In this experiment, MPs in the raw and treated waters of the three major DWTPs of Bangladesh, having different water treatment processes, were evaluated. The concentrations of MPs in the inlet points of Saidabad Water Treatment Plant phase-1 and 2 (SWTP-1 and SWTP-2), which share a similar water source of the Shitalakshya River, were 25.7 ± 9.8 and 26.01 ± 9.8 items L. The third plant, Padma Water Treatment Plant (PWTP) utilizes water from the Padma River and had an initial MP concentration of 6.2 ± 1.6 items L. The studied DWTPs, with their existing treatment processes, were found to reduce the MP loads substantially. The final MP concentrations in treated waters of SWTP-1, SWTP-2, and PWTP were 0.3 ± 0.03, 0.4 ± 0.01, and 0.05 ± 0.02 items L with the removal efficiencies of 98.8, 98.5, and 99.2 %, respectively. The considered size range of MP was 20 μm to <5000. Fragments and fibers were the two predominant MP shapes. In terms of polymer, the MPs were polypropylene (PP, 48 %), polyethylene (PE, 35 %), polyethylene terephthalate (PET, 11 %), and polystyrene (PS, 6 %). The field emission scanning electron microscopy-energy dispersive X-ray spectroscopy (FESEM-EDX) revealed the fractured and rough surfaces of the remaining MPs, which were also found to be contaminated with heavy metals, like lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), copper (Cu), and zinc (Zn). Hence, additional initiatives are required to remove the residual MPs from the treated waters to safeguard the city dwellers from potential hazards.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.165155 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt.
This study investigates the protective effects of resveratrol (RSV) against heat stress (HS)-induced testicular injury in rats. Climate change has exacerbated heat stress, particularly affecting male fertility by impairing testicular function and sexual behavior. A total of 32 rats were allocated into four experimental groups: control, RSV control, HS control, and RSV + HS.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, National Institute of Technology Nagaland, Chumukedima, Dimapur 797103, India.
An exceedingly porous and interwoven fibrous structure was achieved in this study by interlocking titanium carbide (TiC) MXenes onto the electrospun mats using poly(vinylidene fluoride) (PVDF) as the base polymer. The fibrous membrane was further modified with the inclusion of zinc oxide (ZnO) and tungstite (WO·HO) nano/microstructures via annealing and hydrothermal approaches. Through these strategic interfaced morphological developments in novel TiC/ZnO/WO·HO heterostructures, our findings reveal enhanced wettability and charge-segregation desirable for promoting oil-water separation and photoreactivity, respectively.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Faculty of Engineering & Technology, Marwadi University, Rajkot-Morbi Road, Rajkot 360003, Gujarat, India.
Lead (Pb) is a highly toxic heavy metal that causes significant health hazards and environmental damage. Thus, the detection and removal of Pb ions in freshwater sources are imperative for safeguarding public health and the environment. Moreover, the transformation of single resources into multiple high-value products is vital for achieving sustainable development goals (SDGs).
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
Two porphyrin-based polymeric frameworks, SnP-BTC and SnP-BTB, as visible light photocatalysts for wastewater remediation were prepared by the solvothermal reaction of -dihydroxo-[5,15,10,20-tetrakis(phenyl)porphyrinato]tin(IV) (SnP) with 1,3,5-benzenetricarboxylic acid (HBTC) and 1,3,5-tris(4-carboxyphenyl)benzene (HBTB), respectively. The strong bond between the carboxylic acid group of HBTC and HBTB with the axial hydroxyl moiety of SnP leads to the formation of highly stable polymeric architectures. Incorporating the carboxylic acid group onto the surface of SnP changes the conformational frameworks as well as produces rigid structural transformation that includes permanent porosity, good thermodynamic stability, interesting morphology, and excellent photocatalytic degradation activity against AM dye and TC antibiotic under visible light irradiation.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Renewable Energy Laboratory, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan.
Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures-ranging from linear to five and six membered ring systems-were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!