In silico resources help combat cancer drug resistance mediated by target mutations.

Drug Discov Today

National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China. Electronic address:

Published: September 2023

Drug resistance causes catastrophic cancer treatment failures. Mutations in target proteins with altered drug binding indicate a main mechanism of cancer drug resistance (CDR). Global research has generated considerable CDR-related data and well-established knowledge bases and predictive tools. Unfortunately, these resources are fragmented and underutilized. Here, we examine computational resources for exploring CDR caused by target mutations, analyzing these tools based on their functional characteristics, data capacity, data sources, methodologies and performance. We also discuss their disadvantages and provide examples of how potential inhibitors of CDR have been discovered using these resources. This toolkit is designed to help specialists explore resistance occurrence effectively and to explain resistance prediction to non-specialists easily.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drudis.2023.103686DOI Listing

Publication Analysis

Top Keywords

drug resistance
12
cancer drug
8
target mutations
8
resistance
5
silico resources
4
resources help
4
help combat
4
combat cancer
4
drug
4
resistance mediated
4

Similar Publications

Background: Beta-lactams remain the first-line treatment of infections despite the increasing global prevalence of penicillin-resistant/non-susceptible strains. We conducted a cross-sectional household survey in a rural community in northern Vietnam in 2018-2019 to provide prevalence estimates of penicillin non-susceptible (PNSP) carriage and to investigate behavioural and environmental factors associated with PNSP colonization. The data presented will inform the design of a large trial of population-based interventions targeting inappropriate antibiotic use.

View Article and Find Full Text PDF

Background: The Arp2/3 complex is a key regulator of tumor metastasis, and targeting its subunits offers potential for anti-metastatic therapy. However, the expression profiles, prognostic relevance, and diagnostic value of its subunits across cancers remain poorly understood. This study aims to investigate the clinical relevance of Arp2/3 complex subunits, particularly ARPC1A, in pan-cancer, and to further analyze the potential biological mechanisms of ARPC1A, as well as its association with immune infiltration and chemotherapy drug sensitivity.

View Article and Find Full Text PDF

This study, conducted between June 2022 and March 2023 in Dhaka, examined prevalence in 874 samples from vegetables, vegetable wash water, and hand swabs from vendors during summer and winter. Of the total samples, 782 (89.50%) tested positive for , with 95.

View Article and Find Full Text PDF

Genes and proteins expression profile of 2D vs 3D cancer models: a comparative analysis for better tumor insights.

Cytotechnology

April 2025

University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413 India.

When juxtaposed with 2D cell culture models, multicellular tumor spheroids demonstrate a capacity to faithfully replicate certain features inherent to solid tumors. These include spatial architecture, physiological responses, the release of soluble mediators, patterns of gene expression, and mechanisms of drug resistance. The morphological and behavioural similarities between 3D-cultured cells and cells within tumor masses highlight the potential of these models in studying cancer biology and drug responses.

View Article and Find Full Text PDF

Nanoparticle technology has revolutionized breast cancer treatment by offering innovative solutions addressing the gaps in traditional treatment methods. This paper aimed to comprehensively explore the historical journey and advancements of nanoparticles in breast cancer treatment, highlighting their transformative impact on modern medicine. The discussion traces the evolution of nanoparticle-based therapies from their early conceptualization to their current applications and future potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!