A cerebral contrast-enhanced electrical impedance tomography perfusion method is developed for acute ischemic stroke during intravenous thrombolytic therapy. Several clinical contrast agents with stable impedance characteristics and high-conductivity contrast were screened experimentally as electrical impedance contrast agent candidates. The electrical impedance tomography perfusion method was tested on rabbits with focal cerebral infarction, and its capability for early detection was verified based on perfusion images. The experimental results showed that ioversol 350 performed significantly better as an electrical impedance contrast agent than other contrast agents (p < 0.01). Additionally, perfusion images of focal cerebral infarction in rabbits confirmed that the electrical impedance tomography perfusion method could accurately detect the location and area of different cerebral infarction lesions (p < 0.001). Therefore, the cerebral contrast-enhanced electrical impedance tomography perfusion method proposed herein combines traditional, dynamic continuous imaging with rapid detection and could be applied as an early, rapid-detection, auxiliary, bedside imaging method for patients after a suspected ischemic stroke in both prehospital and in-hospital settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10318520 | PMC |
http://dx.doi.org/10.1016/j.nicl.2023.103456 | DOI Listing |
Cells
January 2025
Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand.
The overall goal of this work was to assess the ability of Natural Killer cells to kill cultures of patient-derived glioblastoma cells. Herein we report impressive levels of NK-92 mediated killing of various patient-derived glioblastoma cultures observed at ET (effector: target) ratios of 5:1 and 1:1. This enabled direct comparison of the degree of glioblastoma cell loss across a broader range of glioblastoma cultures.
View Article and Find Full Text PDFSmall
January 2025
Department of Polymers & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, Telangana, 500007, India.
Heterostructures comprise two or more different semiconducting materials stacked either as co-assemblies or self-sorted based on their dynamics of aggregates. However, self-sorting in heterostructures is rather significant in improving the short exciton diffusion length and charge separation. Despite small organic molecules being known for their self-sorting nature, macrocyclic are hitherto unknown owing to unrestrained assemblies from extended π-conjugated systems.
View Article and Find Full Text PDFBiomed Microdevices
January 2025
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
Wearable and implantable biosensors have rapidly entered the fields of health and biomedicine to diagnose diseases and physiological monitoring. The use of wired medical devices causes surgical complications, which can occur when wires break, become infected, generate electrical noise, and are incompatible with implantable applications. In contrast, wireless power transfer is ideal for biosensing applications since it does not necessitate direct connections between measurement tools and sensing systems, enabling remote use of the biosensors.
View Article and Find Full Text PDFNat Commun
January 2025
NanoLund and Solid State Physics, Lund University, Box 118, 22100, Lund, Sweden.
Nonlinear effects play a central role in photonics as they form the foundation for most of the device functionalities such as amplification and quantum state preparation and detection. Typically the nonlinear effects are weak and emerge only at high photon numbers with strong drive. Here we present an experimental study of a Josephson junction -based high-impedance resonator.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Biomedical Engineering, Korea University, Seoul, 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea. Electronic address:
Glycosylation, the intricate process of adding carbohydrate motifs to proteins, lipids, and exosomes on the cell surface, is crucial for both physiological and pathological mechanisms. Alterations in glycans significantly affect cancer cell metastasis by mediating cell-cell and cell-matrix interactions. The subtle changes in glycosylation during malignant transformations highlight the importance of analyzing cell and exosome surface glycosylation for prognostic and early treatment strategies in cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!