The endothelin (ET) signaling system is comprised of three endothelin peptides (ET-1, -2 and -3) and two corresponding endothelin-A and -B receptors (ETR and ETR), which belong to the G-protein coupled receptor (GPCR) superfamily. The endothelin axis, as this system is also referred to, contributes to the maintenance of vascular tone, functions as regulator of inflammation and proliferation and helps in balancing water homeostasis. In pathological settings, the ET axis is known to contribute to endothelial activation in cardiovascular diseases, to cell proliferation, chemoresistance and metastasis in cancer and to inflammation and fibrosis in renal disease. Antagonists of ETR and ETR, either subtype-specific compounds or substances with high affinity to both receptors, have been developed for more than 30 years. In the preclinical context, in vivo imaging of endothelin receptor expression has been utilized to assess ET-axis contribution to e.g. cancer or myocardial infarction. In this work, we present the development and synthesis of two novel ETR-specific fluorescent probes, based on the available antagonists BQ788 and IRL2500 and their preliminary evaluation in a breast cancer context.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2023.115568 | DOI Listing |
J Intellect Dev Disabil
March 2021
Laboratory of Psychopathology and Health Processes (EA n°4057), Department of Psychology, University of Paris, Boulogne-Billancourt, France.
: Rubinstein-Taybi syndrome (RSTS) is a multiple congenital anomaly syndrome characterised by several typical somatic characteristics and by developmental disabilities with various degrees of severity. Focusing on children with RSTS, the aim of this study was to describe their psychomotor, cognitive, and socio-emotional developmental profiles.: Twenty-three children with RSTS (12 boys; 11 girls; mean chronological age: 4 years and 10 months) with severe intellectual disability (mean developmental quotient = 32.
View Article and Find Full Text PDFAdv Clin Chem
January 2025
Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. Electronic address:
Preeclampsia (PE), a pregnancy-related syndrome, has motivated extensive research to understand its pathophysiology and develop early diagnostic methods. 'Omic' technologies, focusing on genes, mRNA, proteins, and metabolites, have revolutionized biological system studies. Urine emerges as an ideal non-invasive specimen for omics analysis, offering accessibility, easy collection, and stability, making it valuable for identifying biomarkers.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Basic Medical Sciences, Faculty of Medicine, Istanbul Medipol University, Istanbul 34815, Türkiye.
The COVID-19 pandemic began in March 2020 and has affected many countries and infected over a million people. It has had a serious impact on people's physical and mental health, daily life and the global economy. Today, many drugs show limited efficacy in the treatment of COVID-19 and studies to develop effective drugs continue.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
January 2025
Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Beijing Institute of Traditional Chinese Medicine, Beijing, China. Electronic address:
Vitiligo is a common chronic skin depigmentation disorder that seriously decreases the patients' overall quality of life. Human blood metabolites could contribute to unraveling the underlying biological mechanisms of vitiligo. We used GWAS summary statistics to assess the causal association between genetically predicted 1,400 serum metabolites and vitiligo risk by Mendelian randomization (MR).
View Article and Find Full Text PDFJ Affect Disord
January 2025
Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA. Electronic address:
Metabolomics provides powerful tools that can inform about heterogeneity in disease and response to treatments. In this exploratory study, we employed an electrochemistry-based targeted metabolomics platform to assess the metabolic effects of three randomly-assigned treatments: escitalopram, duloxetine, and Cognitive-Behavioral Therapy (CBT) in 163 treatment-naïve outpatients with major depressive disorder. Serum samples from baseline and 12 weeks post-treatment were analyzed using targeted liquid chromatography-electrochemistry for metabolites related to tryptophan, tyrosine metabolism and related pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!