The surface morphology of mature biofilms is heterogeneous and can be divided into concentric rings wrinkles (I), labyrinthine networks wrinkles (II), radial ridges wrinkles (III), and branches wrinkles (IV), according to surface wrinkle structure and distribution characteristics. Due to the wrinkle structures, channels are formed between the biofilm and substrate and transport nutrients, water, metabolic products, etc. We find that expansion rate variations of biofilms growing on substrates with high and low agar concentrations (1.5, 2.0, 2.5 wt.%) are not in the same phase. In the first 3 days' growth, the interaction stress between biofilm and each agar substrate increases, which makes the biofilm expansion rate decreases before wrinkle pattern IV (branches) comes up. After 3 days, in the later growth stage after wrinkle pattern IV appears, the biofilm has larger expansion rate growing on 2.0 wt.% agar concentration, which has the larger wrinkle distance in wrinkle pattern IV reducing energy consumption. Our study shows that the stiff substrate does not always inhibit the biofilm expansion, although it does in the earlier stage; after that, mature biofilms acquire larger expansion rate by adjusting the growth mode through the wrinkle evolution even in nutrient extremely depletion.

Download full-text PDF

Source
http://dx.doi.org/10.1139/cjm-2022-0259DOI Listing

Publication Analysis

Top Keywords

expansion rate
20
biofilm expansion
12
wrinkle pattern
12
mature biofilms
8
larger expansion
8
wrinkle
7
expansion
6
rate
5
biofilm
5
analysis biofilm
4

Similar Publications

Idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel (cilta-cel) have revolutionized the treatment of relapsed/refractory multiple myeloma (RRMM), but direct comparisons are lacking. Leveraging an international multicenter RRMM cohort, we compared the outcome of ide-cel ( = 162) versus cilta-cel ( = 42). Co-primary efficacy endpoints of the study were overall response rate (ORR) and progression-free survival (PFS).

View Article and Find Full Text PDF

Silicon is widely recognized as a promising anode material for all-solid-state batteries (ASSBs) due to exceptional specific capacity, abundant availability, and environmental sustainability. However, the considerable volume expansion and particle fragmentation of Si during cycling lead to significant performance degradation, limiting its practical application. Herein, the development of a pre-lithiated Si-based composite anode (c-LiSi) is presented, designed to address the key challenges faced by Si-based anodes, namely severe volume changes and low electrochemical stability.

View Article and Find Full Text PDF

Life-time of the buildings is generally challenged by the act of nature. In-spite of the fact that the constructions provide minimum guarantee on quality and durability, certain mismatch in the composition of the materials, stress on the building, and chemical or physical imbalance of the materials, lead to surface crack. Cracks are also generated due to the shuffle of climatic conditions, which leads to the contraction and expansion of the building surfaces, and other damages.

View Article and Find Full Text PDF

One size does not fit all: revising traditional paradigms for assessing accuracy of QSAR models used for virtual screening.

J Cheminform

January 2025

National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA.

Traditional best practices for quantitative structure activity relationship (QSAR) modeling recommend dataset balancing and balanced accuracy (BA) as the key desired objective of model development. This study explores the value of the conventional norms in the context of using QSAR models for virtual screening of modern large and ultra-large chemical libraries. For this increasingly common task, we now recommend the use of models with the highest positive predictive value (PPV) built on imbalanced training sets as preferred virtual screening tools.

View Article and Find Full Text PDF

Short duration heat acclimation (HA) (≤5 daily heat exposures) elicits incomplete adaptation compared to longer interventions, possibly due to the lower accumulated thermal 'dose'. It is unknown if matching thermal 'dose' over a shorter timescale elicits comparable adaptation to a longer intervention. Using a parallel-groups design, we compared: i) 'condensed' HA (CHA; =17 males) consisting of 4×75 min∙day heat exposures (target rectal temperature ()=38.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!