Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: The combination of SENSE and spiral imaging with fat/water separation enables high temporal efficiency. However, the corresponding computation increases due to the blurring/deblurring operation across the multi-channel data. This study presents two alternative models to simplify computational complexity in the original full model (model 1). The performances of the models are evaluated in terms of the computation time and reconstruction error.
Methods: Two approximated spiral MRI reconstruction models were proposed: the comprehensive blurring before coil operation (model 2) and the regional blurring before coil operation (model 3), respectively, by altering the order of coil-sensitivity encoding process to distribute signals among the multi-channel coils. Four subjects were recruited for scanning both fully sampled T - and T -weighted brain image data with simulated undersampling for testing the computational efficiency and accuracy on the approximation models.
Results: Based on the examples, the computation time can be reduced to 31%-47% using model 2, and to 39%-56% using model 3. The quality of the water image remains unchanged among the three models, whereas the primary difference in image quality is in the fat channel. The fat images from model 3 are consistent with those from model 1, but those from model 2 have higher normalized error, differing by up to 4.8%.
Conclusion: Model 2 provides the fastest computation but exhibits higher error in the fat channel, particularly in the high field and with long acquisition window. Model 3, an abridged alternative, is also faster than the full model and can maintain high accuracy in reconstruction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.29773 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!