Targeting Biomolecular Condensation and Protein Aggregation against Cancer.

Chem Rev

Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil.

Published: July 2023

Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrev.3c00131DOI Listing

Publication Analysis

Top Keywords

biomolecular condensates
12
mutant p53
12
cancer
6
p53
5
targeting biomolecular
4
biomolecular condensation
4
condensation protein
4
protein aggregation
4
aggregation cancer
4
cancer biomolecular
4

Similar Publications

Hedgehog (Hh) morphogen governs embryonic development and tissue homeostasis through the Ci/Gli family transcription factors. Here we report that Hh induces phase separation of the fused (Fu)/Ulk family kinases to allosterically regulate Ci/Gli. We find that Hh-induced phosphorylation of Fu/Ulk3 promotes SUMOylation of their inverted phosphorylation-dependent SUMOylation motifs.

View Article and Find Full Text PDF

Phase boundaries promote chemical reactions through localized fluxes.

J Chem Phys

January 2025

Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

One of the hypothesized functions of biomolecular condensates is to act as chemical reactors, where chemical reactions can be modulated, i.e., accelerated or slowed down, while substrate molecules enter and products exit from the condensate.

View Article and Find Full Text PDF

Liquid-liquid phase separation in hepatocellular carcinoma.

Front Cell Dev Biol

December 2024

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Liquid-liquid phase separation (LLPS) drives the formation of membraneless intracellular compartments within both cytoplasm and nucleus. These compartments can form distinct physicochemical environments, and in particular display different concentrations of proteins, RNA, and macromolecules compared to the surrounding cytosol. Recent studies have highlighted the significant role of aberrant LLPS in cancer development and progression, impacting many core processes such as oncogenic signalling pathways, transcriptional dysregulation, and genome instability.

View Article and Find Full Text PDF

NRBP1 and TSC22D proteins impact distal convoluted tubule physiology through modulation of the WNK pathway.

bioRxiv

December 2024

Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.

The With No lysine (WNK) kinases regulate processes such as cell volume and epithelial ion transport through the modulation of Cation Chloride Cotransporters such as the NaCl cotransporter, NCC, present in the distal convoluted tubule (DCT) of the kidney. Recently, the interaction of WNKs with Nuclear Receptor Binding Protein 1 (NRBP1) and Transforming Growth Factor β-Stimulated Clone 22 Domain (TSC22D) proteins was reported. Here we explored the effect of NRBP1 and TSC22Ds on WNK signaling in vitro and in the DCT.

View Article and Find Full Text PDF

Intrinsically disordered arginine-glycine (RG) repeat domains are enriched in multilayered biomolecular condensates such as the nucleolus. nucleolar RG repeats are dispensable for nucleolar accumulation and instead contribute to the organization of sub-nucleolar compartments. The sufficiency of RG repeats to facilitate sub-nucleolar compartmentalization is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!