Climate change is a significant driver of water resource availability, affecting the magnitude of surface runoff, aquifer recharge, and river flows. This study investigated the impact of climate change on hydrological processes within the Gilgel Gibe catchment and aimed to determine the level of exposure of water resources to these changes, which is essential for future adaptability planning. To achieve this objective, an ensemble mean of six regional climate models (RCMs) from the coordinated regional climate downscaling experiment (CORDEX)-Africa was used to simulate future climatic scenarios. The RCMs outputs were then bias corrected using distribution mapping to match observed precipitation and temperature. The Soil and Water Assessment Tool (SWAT) model was used to assess the hydrological impacts of climate change on the catchment. The results indicated that the ensemble mean of the six RCMs projects a decline in precipitation and an increase in temperature under both the RCP4.5 and RCP8.5 representative concentration pathways. Moreover, the increases in both maximum and minimum temperatures are higher for higher emission scenarios, indicating that RCP8.5 is warmer than RCP4.5. The projected climate change shows a decrease in surface runoff, groundwater, and water yield, resulting in an overall decline of annual flow. This decline is mainly due to the reduction in seasonal flows driven by climate change scenarios. The changes in precipitation range from -11.2% to -14.3% under RCP4.5 and from -9.2% to -10.0% under RCP8.5, while the changes in temperature range from 1.7°C to 2.5°C under RCP4.5 and from 1.8°C to 3.6°C under RCP8.5. These changes could lead to reduced water availability for crop production, which could be a chronic issue for subsistence agriculture. Additionally, the reduction of surface water and groundwater could further exacerbate water stress in the downstream areas, affecting the availability of water resources in the catchment. Furthermore, the increasing demands for water, driven by population growth and socioeconomic progress, along with the variability in temperature and evaporation demands, will amplify prolonged water scarcity. Therefore, robust climate-resilient water management policies are indispensable to manage these risks. In conclusion, this study highlights the importance of considering the impact of climate change on hydrological processes and the need for proactive adaptation measures to mitigate the impacts of climate change on water resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10306186PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287314PLOS

Publication Analysis

Top Keywords

climate change
32
impacts climate
12
change hydrological
12
hydrological processes
12
water
12
water resources
12
climate
9
change
8
processes gilgel
8
gilgel gibe
8

Similar Publications

Characterization of Hazelnut Trees in Open Field Through High-Resolution UAV-Based Imagery and Vegetation Indices.

Sensors (Basel)

January 2025

Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.

The increasing demand for hazelnut kernels is favoring an upsurge in hazelnut cultivation worldwide, but ongoing climate change threatens this crop, affecting yield decreases and subject to uncontrolled pathogen and parasite attacks. Technical advances in precision agriculture are expected to support farmers to more efficiently control the physio-pathological status of crops. Here, we report a straightforward approach to monitoring hazelnut trees in an open field, using aerial multispectral pictures taken by drones.

View Article and Find Full Text PDF

The use of hydrogen as fuel presents many safety challenges due to its flammability and explosive nature, combined with its lack of color, taste, and odor. The purpose of this paper is to present an electrochemical sensor that can achieve rapid and accurate detection of hydrogen leakage. This paper presents both the component elements of the sensor, like sensing material, sensing element, and signal conditioning, as well as the electronic protection and signaling module of the critical concentrations of H.

View Article and Find Full Text PDF

Electric heaters are widely used owing to their portability, fast heating, single-focus heating, and energy efficiency advantages. Manufacturers provide customers with information on the power consumption and energy efficiency classes of heaters but do not provide any information on heating patterns. Knowing the heating pattern enables users to select the correct heater, which has a significant effect on comfort, health, energy efficiency, industrial process performance, plant growth, and climate change.

View Article and Find Full Text PDF

This research aimed to evaluate the use of edible coating from a combination of liquid smoke and turmeric extract as a preservative for mackerel at room temperature. Liquid smoke was obtained from the pyrolysis of oil palm empty fruit bunches (OPEFB) at a temperature of 380 °C and purified by distillation at 190 °C. Liquid smoke with a concentration of 3% was combined with turmeric extract at a ratio of 2, 4, 6, and 8 g/L (CLS 2:1, CLS 4:1, CLS 6:1 and CLS 8:1).

View Article and Find Full Text PDF

Climate change is significantly altering the dynamics of airborne allergens, affecting their seasonality, allergenicity, and geographic distribution, which correlates with increasing rates of allergic diseases. This study investigates aeroallergen sensitization among populations from Tenerife, Spain, and Lima, Peru-two regions with similar climates but distinct socio-economic conditions. Our findings reveal that Spanish individuals, particularly those with asthma, demonstrate higher sensitization levels to a broader range of allergens, especially mites, with 85% of participants reacting to at least one mite allergen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!