Peptoids are a class of highly customizable biomimetic foldamers that retain properties from both proteins and polymers. It has been shown that peptoids can adopt peptide-like secondary structures through the careful selection of sidechain chemistries, but the underlying conformational landscapes that drive these assemblies at the molecular level remain poorly understood. Given the high flexibility of the peptoid backbone, it is essential that methods applied to study peptoid secondary structure formation possess the requisite sensitivity to discriminate between structurally similar yet energetically distinct microstates. In this work, a generalizable simulation scheme is used to robustly sample the complex folding landscape of various 12mer polypeptoids, resulting in a predictive model that links sidechain chemistry with preferential assembly into one of 12 accessible backbone motifs. Using a variant of the metadynamics sampling method, four peptoid dodecamers are simulated in water: sarcosine, N-(1-phenylmethyl)glycine (Npm), (S)-N-(1-phenylethyl)glycine (Nspe), and (R)-N-(1-phenylethyl)glycine (Nrpe)─to determine the underlying entropic and energetic impacts of hydrophobic and chiral peptoid sidechains on secondary structure formation. Our results indicate that the driving forces to assemble Nrpe and Nspe sequences into polyproline type-I helices in water are found to be enthalpically driven, with small benefits from an entropic gain for isomerization and steric strain due to the presence of the chiral center. The minor entropic gains from bulky chiral sidechains in Nrpe- and Nspe-containing peptoids can be explained through increased configurational entropy in the state. However, overall assembly into a helix is found to be overall entropically unfavorable. These results highlight the importance of considering the many various competing interactions in the rational design of peptoid secondary structure building blocks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.3c01913 | DOI Listing |
Nat Commun
January 2025
Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
Hydrous aluminosilicates are important deep water-carriers in sediments subducting into the deep mantle. To date, it remains enigmatic how hydrous aluminosilicates withstand extremely high temperatures in the mantle transition zone. Here we systematically investigate the crystal structures and chemical compositions of typical hydrous aluminosilicates using single-crystal X-ray diffraction, electron probe microanalyzer, and nanoscale secondary ion mass spectrometry.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China.
Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.
View Article and Find Full Text PDFCancer Lett
January 2025
. Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. Electronic address:
Tertiary lymphoid structures (TLSs) are ectopic immune cell clusters formed in nonlymphoid tissues affected by persistent inflammation, such as in cancer and prolonged infections. They have features of the structure and function of secondary lymphoid organs, featuring central CD20+ B cells, surrounded by CD3+ T cells, CD21+ follicular dendritic cells, and CD68+ macrophages, with a complex vascular system. TLS formation is governed by lymphotoxin-α1β2, TNF, and chemokines like CCL19, CCL21, and CXCL13, differing from secondary lymphoid organ development in developing later in life at sites of chronic inflammation.
View Article and Find Full Text PDFNat Prod Res
January 2025
Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, P. R. China.
A new hydrindane derivative, asperhydrindane A (), along with two known sterol analogues [isocyathisterol () and ganodermasides D ()] were isolated from the mangrove-derived fungus GXIMD 03158 attaching to the mangrove L. The structure of was elucidated based on extensive spectral analysis, HRESIMS, and calculated ECD methods. All compounds were evaluated for antibacterial activity.
View Article and Find Full Text PDFPharmaceutics
January 2025
School of Medicine and Population Health, The University of Sheffield, Barber House, Sheffield S10 2HQ, UK.
: In the quest for sustainable and biocompatible materials, silk fibroin (SF), derived from natural silk, has emerged as a promising candidate for nanoparticle production. This study aimed to fabricate silk fibroin particles (SFPs) using a novel swirl mixer previously presented by our group, evaluating their characteristics and suitability for drug delivery applications, including magnetic nanoparticles and dual-drug encapsulation with curcumin (CUR) and 5-fluorouracil (5-FU). : SFPs were fabricated via microfluidics-assisted desolvation using a swirl mixer, ensuring precise mixing kinetics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!