Pressure-sensitive adhesives (PSAs) are made from soft, irreversibly lightly crosslinked polymers. Even after removal from surfaces, they retain insoluble networks which pose problems during the recycling of glass and cardboard. Herein, degradable PSAs are presented that provide the required performance in use but have networks that can be degraded after use. A series of copolymers was prepared through radical copolymerization of n-butyl acrylate, 4-acryloyloxy benzophenone (ABP) photo-crosslinker, and dibenzo[c,e]oxepin-5(7H)-thione (DOT) to provide degradable backbone thioesters. The optimum tack and peel strengths were found for molar contents of 0.05 mol% ABP and 0.25 mol% DOT. Degradation of the backbone thioesters through aminolysis or thiolysis led to the full dissolution of the networks, loss of adhesive properties of films (decreases in the measured tack and peel strengths), and the quick detachment of model labels from a substrate. Inclusion of DOT into PSAs offers a viable route toward degradable and recyclable packaging labels.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202307009DOI Listing

Publication Analysis

Top Keywords

pressure-sensitive adhesives
8
backbone thioesters
8
tack peel
8
peel strengths
8
degradable
4
degradable ultraviolet-crosslinked
4
ultraviolet-crosslinked pressure-sensitive
4
adhesives thioester-functional
4
thioester-functional acrylate
4
acrylate copolymers
4

Similar Publications

A Microwave-Strengthened Supramolecular Adhesive: from Flexible Pressure Sensitive Bonding to Strong and Muti-Reusable Hot Melt Bonding.

Small

January 2025

Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.

A microwave-strengthened supramolecular adhesive by introducing maleic acid amide bonds into the cross-linked networks of catechol-based monomers and iron oxide nanoparticles is reported. Under microwave irradiation, the supramolecular adhesive can be rapidly heated up, causing the transformation from maleic acid amide bonds to maleimide bonds and thus the increase of its cohesive strength. The supramolecular adhesive can flexibly bond substrates like pressure sensitive adhesives during the bonding procedure and shows an adhesion strength of 0.

View Article and Find Full Text PDF

Background: Hot-melt Pressure-sensitive Adhesives (HMPSA) are eco-friendly pressuresensitive adhesives, with the potential of being used as substrates for transdermal patches. However, due to the low hydrophilicity of HMPSA, the application is limited in the field of Traditional Chinese Medicine (TCM) plasters.

Methods: Three modified HMPSA were prepared with acrylic resin EPO, acrylic resin RL100, and Polyvinylpyrrolidone (PVP) as the modifying materials.

View Article and Find Full Text PDF

Acrylic pressure-sensitive adhesives (PSAs) are widely applied in transdermal drug delivery systems (TDDS). However, the molecular mechanisms underlying the effect of functional groups of PSAs on drug release and transdermal permeation properties remain insufficiently clear. In this study, we investigated the effect of acrylic PSAs' functional groups on the in vitro release and transdermal permeation properties of a model drug guanfacine (GFC).

View Article and Find Full Text PDF

The impact of active substance on the adhesiveness of medicated patches containing liquid additives.

Eur J Pharm Sci

December 2024

Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Gdansk, Hallera av. 107, Gdansk 80-402, Poland.

Adhesiveness of dermal patches can be modified in the presence of active substances. The effect is more complex when liquid components are also present in the matrix. Commercial grade pressure sensitive adhesive (PSA) polyacrylates (three types) and silicones (two types) were used to prepare adhesive matrices and liquid additives were propylene glycol, polyoxyethylene glycol, isopropyl myristate, triacetin, triethyl citrate or low viscosity silicone oil.

View Article and Find Full Text PDF

The ring-opening polymerization of bio-based monomer 2-methylene-1,3-dioxepane (MDO) can reportedly enhance polymer degradability. Butyl acrylate (BA)/MDO/vinyl acetate (VAc) terpolymers were synthesized via emulsion polymerization for their eventual application as pressure-sensitive adhesives (PSAs). While using MDO in emulsion polymerization leads to a more sustainable process, it also presents challenges such as MDO hydrolysis, MDO ring retention, and inadequate MDO distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!