Biobased nanoparticles are at the leading edge of the rapidly developing field of nanomedicine and biotherapeutics. Their unique size, shape, and biophysical properties make them attractive tools for biomedical research, including vaccination, targeted drug delivery, and immune therapy. These nanoparticles are engineered to present native cell receptors and proteins on their surfaces, providing a biomimicking camouflage for therapeutic cargo to evade rapid degradation, immune rejection, inflammation, and clearance. Despite showing promising clinical relevance, commercial implementation of these biobased nanoparticles is yet to be fully realized. In this perspective, we discuss advanced biobased nanoparticle designs used in medical applications, such as cell membrane nanoparticles, exosomes, and synthetic lipid-derived nanoparticles, and highlight their benefits and potential challenges. Moreover, we critically assess the future of preparing such particles using artificial intelligence and machine learning. These advanced computational tools will be able to predict the functional composition and behavior of the proteins and cell receptors present on the nanoparticle surfaces. With more advancement in designing new biobased nanoparticles, this field of research could play a key role in dictating the future rational design of drug transporters, thereby ultimately improving overall therapeutic outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.3c00364 | DOI Listing |
Int J Biol Macromol
January 2025
School of Food Science and Technology, Hunan Agricultural University, 410128, Hunan, China. Electronic address:
This study explored a facile method for converting macadamia nutshells into bio-based nanomaterials, including cellulose nanofibers (CNFs) and lignin nanoparticles (LNPs), through deep eutectic solvent (DES) pretreatment coupled with a nanofabrication strategy. Comparisons of the physicochemical, morphological, and structural properties of the CNF and LNPs produced through acidic choline chloride/oxalic acid dihydrate (ACDES) and alkaline KCO/glycerol DES (ALDES) pretreatments were conducted using SEM, TEM, FTIR, XRD, TGA, GPC and 2D NMR. The CNFs obtained from ACDES pretreatment (ACCNFs) exhibited uniform and long filament-like structures with shorter whisker-like nanocrystals.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Fiber System Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
Polybenzoxazines (PBzs), a class of high-performance thermosetting polymers, have gained significant attention for their exceptional thermal stability, mechanical properties, and chemical resistance, making them ideal for aerospace, electronics, and biomedical applications. Recent advancements emphasize their antimicrobial potential, attributed to unique structural properties and the ability to incorporate bio-active functional groups. This review highlights the synthesis, antimicrobial mechanisms, and applications of PBzs and their bio-based derivatives, focusing on sustainable materials science.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye.
Chitosan, a multifaceted amino polysaccharide biopolymer derived from chitin, has extensive antibacterial efficacy against diverse pathogenic microorganisms, including both Gram-negative and Gram-positive bacteria, in addition to fungi. Over the course of the last several decades, chitosan nanoparticles (NPs), which are polymeric and bio-based, have garnered a great deal of interest as efficient antibacterial agents. This is mostly due to the fact that they are used in a wide variety of applications, including medical treatments, food, chemicals, and agricultural products.
View Article and Find Full Text PDFGels
January 2025
National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania.
Stimulus-responsive hydrogels have emerged as versatile materials for environmental and wastewater treatment applications due to their ability to adapt to changing environmental conditions. This review highlights recent advances in the design, synthesis, and functionalization of such hydrogels, focusing on their environmental applications. Various synthesis techniques, including radical polymerization, grafting, and copolymerization, enable the development of hydrogels with tailored properties such as enhanced adsorption capacity, selectivity, and reusability.
View Article and Find Full Text PDFFood Res Int
February 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:
Using Pickering emulsion (PE) as the carrier of active compounds in bio-based coatings constitutes a highly promising research domain. This study focused on creating a food-grade, biocompatible, and antibacterial PE to coat fresh fruits and vegetables, extending their shelf life. Hollow zein/soluble soybean polysaccharide nanoparticles loaded with thymol (H-ZSH/T) were produced using NaHCO as a sacrificial template to stabilize PE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!