Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Drop on demand (DOD) inkjet method is a cost-efficient way of producing hydroxyapatite (HAp) microsphere scaffolds with narrow size distribution. However, DOD fabrication parameters may influence the yield and characteristics of the microsphere scaffolds. Testing different permutations and combinations of fabrication parameters is costly and time consuming. Taguchi method could be used as a predictive tool for optimizing the key fabrication parameters to produce HAp microspheres with desired yield and properties, minimizing the number of experimental combinations to be tested. The aim of this study is to investigate the influence of the fabrication parameters on the characteristics of the microspheres formed and determine optimum parameter conditions for producing high yield HAp microsphere scaffolds with the desired properties intended to serve as potential bone substitutes. We aimed to achieve microspheres with high production yield, microsphere size of <230 μm, micropore sizes <1 μm, rough surface morphology and high sphericity. Experiments were conducted using Taguchi method with a L9 orthogonal array at three levels per parameter to determine optimum parameter values for (1) operating pressure, (2) shutter speed duration, (3) nozzle height and (4) CaCl concentration. Based on signal-to-noise (S/N) ratio analysis, the identified optimum parameter conditions for operating pressure, shutter speed duration, nozzle height and CaCl concentration to be 0.9-1.3 bar, 100 ms, 8 cm and 0.4 M respectively. The microspheres obtained had an average size of 213 μm, 0.45 μm micropore size, high sphericity index of 0.95 and high production yield of 98%. Confirmation tests and ANOVA results affirms the validity of Taguchi method in optimizing HAp microspheres with high yield, desired size, micropore size and shape. HAp microsphere scaffolds produced by optimum conditions were subjected to a 7-day in-vitro study. Cells remained viable and continued to proliferate (increased 1.2-fold) over 7 days with microspheres maintaining high cell density with cells bridging between microspheres. Alkaline phosphatase (ALP) assay increased 1.5-fold from day 1, suggesting good osteogenic potency of HAp microspheres as potential bone substitutes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.35297 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!