As renewable electricity becomes cost competitive with fossil fuel energy sources and environmental concerns increase, the transition to electrified chemical and fuel synthesis pathways becomes increasingly desirable. However, electrochemical systems have traditionally taken many decades to reach commercial scales. Difficulty in scaling up electrochemical synthesis processes comes primarily from difficulty in decoupling and controlling simultaneously the effects of intrinsic kinetics and charge, heat, and mass transport within electrochemical reactors. Tackling this issue efficiently requires a shift in research from an approach based on small datasets, to one where digitalization enables rapid collection and interpretation of large, well-parameterized datasets, using artificial intelligence (AI) and multi-scale modeling. In this perspective, we present an emerging research approach that is inspired by smart manufacturing (SM), to accelerate research, development, and scale-up of electrified chemical manufacturing processes. The value of this approach is demonstrated by its application toward the development of CO electrolyzers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10291476PMC
http://dx.doi.org/10.1016/j.isci.2023.106966DOI Listing

Publication Analysis

Top Keywords

electrified chemical
12
smart manufacturing
8
development scale-up
8
scale-up electrified
8
chemical manufacturing
8
manufacturing inspired
4
approach
4
inspired approach
4
approach development
4
manufacturing systems
4

Similar Publications

Exploring critical pathways using robust strategies: Nanodiamond electrocatalysts for promoting boron removal via electrosorption.

Water Res

December 2024

Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea. Electronic address:

Article Synopsis
  • The study introduces a new electrosorption technology using nanodiamonds to effectively remove boron from wastewater, achieving an impressive boron adsorption capacity of 10.5 μmol/g.
  • It highlights the importance of different gas purging methods on the electrosorption process and characterizes the deterioration of electrodes through advanced spectroscopy techniques.
  • A machine learning model was developed to predict effluent properties and optimize the system, demonstrating the potential of ML in enhancing water treatment processes.
View Article and Find Full Text PDF

Magnetic particles (FeO) magnify ion transfer processes at the electrified liquid-liquid interface. Case study: Levamisole detection.

Talanta

December 2024

University of Lodz, Department of Inorganic and Analytical Chemistry, Electroanalysis and Electrochemistry Group, Faculty of Chemistry, Tamka 12, 91-403, Lodz, Poland. Electronic address:

This article describes the effect of non-stabilized magnetic particles FeO (nanoparticles aggregates) addition to the aqueous phase of the polarized liquid-liquid interface (LLI) on the interfacial ion transfer processes. LLI was formed between 1,2-dichloroethane and water solutions (1,2 DCE)|water. The synthesis of FeO magnetic particles (MPs) was achieved by the co-precipitation method, after which their appearance, size of aggregates, and zeta potential were assessed.

View Article and Find Full Text PDF

Induction Heating for the Electrification of Catalytic Processes.

ChemSusChem

December 2024

Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France.

The increasing availability of electrical energy generated from clean, low-carbon, renewable sources like solar and wind power is paving the way for a more sustainable future. This has resulted in a growing trend in the chemical industry to increase the share of electricity use in chemical processes, particularly catalytic ones. This shift towards electrifying catalytic processes offers significant environmental benefits.

View Article and Find Full Text PDF

Efforts addressing sludge management, food security, and resource recovery have led to novel approaches in these areas. Electrically assisted conversion of sludge stands out as a promising technology for sewage sludge valorization, producing nitrogen and phosphorus-based fertilizers. The adoption of this technology, which could lead to a fertilizer circular economy, holds the potential to catalyze a transformative change in wastewater treatment facilities toward process intensification, innovation, and sustainability.

View Article and Find Full Text PDF

Controlling the redox ability is crucial for optimizing catalytic processes in clean energy, environmental protection, and CO reduction, as it directly influences the reaction efficiency and electron transfer rates, driving sustainable and effective outcomes. Here, we report the plasma-electrified synthesis of composition-controlled FeAu bimetallic nanoparticles, specifically engineered to enhance the redox catalytic performance through precise tuning of their chemical states. Utilizing atmospheric-pressure microplasmas, FeAu nanoparticles were synthesized under ambient conditions without the need for reducing agents or organic solvents, thereby providing a green and sustainable approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!