Introduction: Due to the intensification of fish farming and the associated spread of antimicrobial resistance among animals and humans, it is necessary to discover new alternatives in the therapy and prophylaxis of diseases. Probiotics appear to be promising candidates because of their ability to stimulate immune responses and suppress the growth of pathogens.

Methods: The aim of this study was to prepare fish feed mixtures with various compositions and, based on their physical characteristics (sphericity, flow rate, density, hardness, friability, and loss on drying), choose the most suitable one for coating with the selected probiotic strain R2 Biocenol™ CCM 8674 (new nom. ). The probiotic strain was examined through sequence analysis for the presence of plantaricin- related genes. An invented coating technology based on a dry coating with colloidal silica followed by starch hydrogel containing was applied to pellets and tested for the viability of probiotics during an 11-month period at different temperatures (4°C and 22°C). The release kinetics of probiotics in artificial gastric juice and in water (pH = 2 and pH = 7) were also determined. Chemical and nutritional analyses were conducted for comparison of the quality of the control and coated pellets.

Results And Discussion: The results showed a gradual and sufficient release of probiotics for a 24-hour period, from 10 CFU at 10 mi up to 10 at the end of measurement in both environments. The number of living probiotic bacteria was stable during the whole storage period at 4°C (10), and no significant decrease in living probiotic bacteria was observed. Sanger sequencing revealed the presence of plantaricin A and plantaricin EF. Chemical analysis revealed an increase in multiple nutrients compared to the uncoated cores. These findings disclose that the invented coating method with a selected probiotic strain improved nutrient composition and did not worsen any of the physical characteristics of pellets. Applied probiotics are also gradually released into the environment and have a high survival rate when stored at 4°C for a long period of time. The outputs of this study confirm the potential of prepared and tested probiotic fish mixtures for future use in experiments and in fish farms for the prevention of infectious diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10291687PMC
http://dx.doi.org/10.3389/fvets.2023.1196884DOI Listing

Publication Analysis

Top Keywords

probiotic strain
12
fish feed
8
coating method
8
physical characteristics
8
selected probiotic
8
invented coating
8
living probiotic
8
probiotic bacteria
8
probiotic
7
fish
5

Similar Publications

The mechanisms underlying the impact of probiotic supplementation on health remain largely elusive. While previous studies primarily focus on the discovery of novel bioactive bacteria and alterations in the microbiome environment to explain potential probiotic effects, our research delves into the role of living Lactiplantibacillus (formerly known as Lactobacillus) and their conditioned media, highlighting that only the former, not dead bacteria, enhance the healthspan of Caenorhabditis elegans (C. elegans).

View Article and Find Full Text PDF

Whole-genome sequencing and genomic analysis of four strains newly isolated from human feces.

Front Microbiol

December 2024

West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.

Background: Numerous studies have demonstrated that is closely associated with human health. These bacteria colonize the mucus layer of the gastrointestinal tract and utilize mucin as their sole source of carbon and nitrogen. spp.

View Article and Find Full Text PDF

Characterization and functionality of 1003 isolated from chicken cecum against .

Front Cell Infect Microbiol

December 2024

Postdoctoral Research Workstation, Heilongjiang Academy of Agricultural Sciences, Harbin, China.

Lactic acid bacteria are widely regarded as safe alternatives to antibiotics in livestock and poultry farming and have probiotic potential. () is a prominent component of pigeon crop microbiota; however, its function is unknown. In this study, a strain of 1003 from pigeon cecum was identified by combining whole genome sequencing and phenotypic analysis, and its safety and probiotic properties were studied.

View Article and Find Full Text PDF

Live Akkermansia muciniphila boosts dendritic cell retinoic acid synthesis to modulate IL-22 activity and mitigate colitis in mice.

Microbiome

December 2024

Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China.

Background: The interplay between gut microbiota and immune responses is crucial in ulcerative colitis (UC). Though Akkermansia muciniphila (Akk) shows therapeutic potential, the mechanisms remain unclear. This study sought to investigate differences in therapeutic efficacy among different forms or strains of Akk and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is an inflammatory bowel disease marked by gut inflammation and microbial dysbiosis. Exopolysaccharides (EPS) from probiotic bacteria have been shown to regulate microbial composition and metabolism, but their role in promoting probiotic growth and alleviating inflammation in UC remains unclear. Here, we investigate BLEPS-1, a novel EPS derived from Bifidobacterium longum subsp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!