Background: Stomach adenocarcinoma (STAD), caused by mutations in stomach cells, is characterized by poor overall survival. Chemotherapy is commonly administered for stomach cancer patients following surgical resection. An imbalance in tumor metabolic pathways is connected to tumor genesis and growth. It has been discovered that glutamine (Gln) metabolism plays a crucial role in cancer. Metabolic reprogramming is associated with clinical prognosis in various cancers. However, the role of glutamine metabolism genes (GlnMgs) in the fight against STAD remains poorly understood.
Methods: GlnMgs were determined in STAD samples from the TCGA and GEO datasets. The TCGA and GEO databases provide information on stemness indices (mRNAsi), gene mutations, copy number variations (CNV), tumor mutation burden (TMB), and clinical characteristics. Lasso regression was performed to build the prediction model. The relationship between gene expression and Gln metabolism was investigated using co-expression analysis.
Results: GlnMgs, found to be overexpressed in the high-risk group even in the absence of any symptomatology, demonstrated strong predictive potential for STAD outcomes. GSEA highlighted immunological and tumor-related pathways in the high-risk group. Immune function and m6a gene expression differed significantly between the low- and high-risk groups. AFP, CST6, CGB5, and ELANE may be linked to the oncology process in STAD patients. The prognostic model, CNVs, single nucleotide polymorphism (SNP), and medication sensitivity all revealed a strong link to the gene.
Conclusion: GlnMgs are connected to the genesis and development of STAD. These corresponding prognostic models aid in predicting the prognosis of STAD GlnMgs and immune cell infiltration in the tumor microenvironment (TME) may be possible therapeutic targets in STAD. Furthermore, the glutamine metabolism gene signature presents a credible alternative for predicting STAD outcomes, suggesting that these GlnMgs could open a new field of study for STAD-focused therapy Additional trials are needed to validate the results of the current study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10292820 | PMC |
http://dx.doi.org/10.3389/fonc.2023.1201297 | DOI Listing |
Front Neurol
January 2025
Department of Radiology and Nuclear Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China.
Objective: To assess the changes of thalamic metabolites before and after surgery in patients with Cervical Spondylotic Myelopathy (CSM) using Hydrogen Proton Magnetic Resonance Spectroscopy (H-MRS) and to investigate its association with improvement in neurological function.
Methods: Forty-eight CSM patients who underwent cervical decompression surgery from December 2022 to June 2023 were included, and 33 healthy volunteers were recruited. All subjects underwent bilateral thalamic H-MRS scans before the surgical procedure, and subsequently again 6 months later.
Front Endocrinol (Lausanne)
January 2025
Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
Bariatric surgery is an effective treatment for type 2 Diabetes Mellitus (T2DM), yet the precise mechanisms underlying its effectiveness remain incompletely understood. While previous research has emphasized the role of rearrangement of the gastrointestinal anatomy, gaps persist regarding the specific impact on the gut microbiota and barriers within the biliopancreatic, alimentary, and common limbs. This study aimed to investigate the effects of duodenal-jejunal bypass (DJB) surgery on obese T2DM mice.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, United States.
Glutamine synthetase (GS) is a ubiquitous enzyme central to nitrogen metabolism, catalyzing the ATP-dependent formation of glutamine from glutamate and ammonia. Positioned at the intersection of nitrogen metabolism with carbon metabolism, the activity of GS is subject to sophisticated regulation. While the intricate regulatory pathways that govern GS were established long ago, recent work has demonstrated that homologues are controlled by multiple distinct regulatory patterns, such as the metabolite induced oligomeric state formation in archaeal GS by 2-oxoglutarate.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang 261031, Shandong Province, China.
Pancreatic Cancer (PC) is a devastating malignancy with a poor prognosis and in-creasing morbidity. Current treatment strategies have limited efficacy in improving patient survival. Metabolic reprogramming is a hallmark of cancer and plays a key role in the pro-gression and maintenance of PC.
View Article and Find Full Text PDFCell Biosci
January 2025
Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
Background: Japanese encephalitis (JE) induced by Japanese encephalitis virus (JEV) infection is the most prevalent diagnosed epidemic viral encephalitis globally. The underlying pathological mechanisms remain largely unknown. Given that viruses are obligate intracellular parasites, cellular metabolic reprogramming triggered by viral infection is intricately related to the establishment of infection and progression of disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!