Imidacloprid is one of the most commonly used neonicotinoid pesticides that has been identified as a neurotoxin for various non-target organisms. It binds to the central nervous system of organisms, causing paralysis and eventually death. Thus, it is imperative to treat waterwaters contaminated with imidacloprid using an efficient and cost effective method. The present study presents AgO/CuO composites as excellent catalysts for the photocatalytic degradation of imidacloprid. The AgO/CuO composites were prepared in different compositions by adopting the co-precipitation method and used as a catalyst for the degradation of imidacloprid. The degradation process was monitored using UV-vis spectroscopy. The composition, structure, and morphologies of the composites were determined by FT-IR, XRD, TGA, and SEM analyses. The effect of different parameters time, concentration of pesticide, concentration of catalyst, pH, and temperature on the degradation was studied under UV irradiation and dark conditions. The results of the study evidenced the 92.3% degradation of imidacloprid in only 180 minutes, which was 19.25 hours under natural conditions. The degradation followed first-order kinetics, with the half life of the pesticide being 3.7 hours. Thus, the AgO/CuO composite was an excellent cost-effective catalyst. The non-toxic nature of the material adds further benefits to its use. The stability of the catalyst and its reusability for consecutive cycles make it more cost effective. The use of this material may help to ensure an immidacloprid free environment with minimal use of resources. Moreover, the potential of this material to degrade other environmental pollutants may also be explored.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10291563PMC
http://dx.doi.org/10.1039/d3ra02109bDOI Listing

Publication Analysis

Top Keywords

degradation imidacloprid
16
ago/cuo composites
12
photocatalytic degradation
8
imidacloprid ago/cuo
8
cost effective
8
imidacloprid
6
degradation
6
ago/cuo
4
composites
4
composites imidacloprid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!