A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomes of the world under climate change scenarios: increasing aridity and higher temperatures lead to significant shifts in natural vegetation. | LitMetric

The global potential distribution of biomes (natural vegetation) was modelled using 8,959 training points from the BIOME 6000 dataset and a stack of 72 environmental covariates representing terrain and the current climatic conditions based on historical long term averages (1979-2013). An ensemble machine learning model based on stacked regularization was used, with multinomial logistic regression as the meta-learner and spatial blocking (100 km) to deal with spatial autocorrelation of the training points. Results of spatial cross-validation for the BIOME 6000 classes show an overall accuracy of 0.67 and R of 0.61, with "tropical evergreen broadleaf forest" being the class with highest gain in predictive performances (R = 0.74) and "prostrate dwarf shrub tundra" the class with the lowest (R = -0.09) compared to the baseline. Temperature-related covariates were the most important predictors, with the mean diurnal range (BIO2) being shared by all the base-learners (,random forest, gradient boosted trees and generalized linear models). The model was next used to predict the distribution of future biomes for the periods 2040-2060 and 2061-2080 under three climate change scenarios (RCP 2.6, 4.5 and 8.5). Comparisons of predictions for the three epochs (present, 2040-2060 and 2061-2080) show that increasing aridity and higher temperatures will likely result in significant shifts in natural vegetation in the tropical area (shifts from tropical forests to savannas up to 1.7 ×10 km by 2080) and around the Arctic Circle (shifts from tundra to boreal forests up to 2.4 ×10 km by 2080). Projected global maps at 1 km spatial resolution are provided as probability and hard classes maps for BIOME 6000 classes and as hard classes maps for the IUCN classes (six aggregated classes). Uncertainty maps (prediction error) are also provided and should be used for careful interpretation of the future projections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10292195PMC
http://dx.doi.org/10.7717/peerj.15593DOI Listing

Publication Analysis

Top Keywords

natural vegetation
12
biome 6000
12
climate change
8
change scenarios
8
increasing aridity
8
aridity higher
8
higher temperatures
8
shifts natural
8
training points
8
6000 classes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!