A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ATM-ESCO2-SMC3 axis promotes 53BP1 recruitment in response to DNA damage and safeguards genome integrity by stabilizing cohesin complex. | LitMetric

ATM-ESCO2-SMC3 axis promotes 53BP1 recruitment in response to DNA damage and safeguards genome integrity by stabilizing cohesin complex.

Nucleic Acids Res

State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.

Published: August 2023

53BP1 is primarily known as a key regulator in DNA double-strand break (DSB) repair. However, the mechanism of DSB-triggered cohesin modification-modulated chromatin structure on the recruitment of 53BP1 remains largely elusive. Here, we identified acetyltransferase ESCO2 as a regulator for DSB-induced cohesin-dependent chromatin structure dynamics, which promotes 53BP1 recruitment. Mechanistically, in response to DNA damage, ATM phosphorylates ESCO2 S196 and T233. MDC1 recognizes phosphorylated ESCO2 and recruits ESCO2 to DSB sites. ESCO2-mediated acetylation of SMC3 stabilizes cohesin complex conformation and regulates the chromatin structure at DSB breaks, which is essential for the recruitment of 53BP1 and the formation of 53BP1 microdomains. Furthermore, depletion of ESCO2 in both colorectal cancer cells and xenografted nude mice sensitizes cancer cells to chemotherapeutic drugs. Collectively, our results reveal a molecular mechanism for the ATM-ESCO2-SMC3 axis in DSB repair and genome integrity maintenance with a vital role in chemotherapy response in colorectal cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415120PMC
http://dx.doi.org/10.1093/nar/gkad533DOI Listing

Publication Analysis

Top Keywords

chromatin structure
12
atm-esco2-smc3 axis
8
promotes 53bp1
8
53bp1 recruitment
8
response dna
8
dna damage
8
genome integrity
8
cohesin complex
8
dsb repair
8
recruitment 53bp1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!