Tumor necrosis factor receptor-associated factor proteins (TRAFs) are trimeric proteins that play a fundamental role in signaling, acting as intermediaries between the tumor necrosis factor (TNF) receptors and the proteins that transmit the downstream signal. The monomeric subunits of all the TRAF family members share a common tridimensional structure: a C-terminal globular domain and a long coiled-coil tail characterizing the N-terminal section. In this study, the dependence of the TRAF2 dynamics on the length of its tail was analyzed . In particular, we used the available crystallographic structure of a C-terminal fragment of TRAF2 (168 out of 501 a.a.), TRAF2-C, and that of a longer construct, addressed as TRAF2-plus, that we have re-constructed using the AlphaFold2 code. The results indicate that the longer N-terminal tail of TRAF2-plus has a strong influence on the dynamics of the globular regions in the protein C-terminal head. In fact, the quaternary interactions among the TRAF2-C subunits change asymmetrically in time, while the movements of TRAF2-plus monomers are rather limited and more ordered than those of the shorter construct. Such findings shed a new light on the dynamics of TRAF subunits and on the protein mechanism , since TRAF monomer-trimer equilibrium is crucial for several reasons (receptor recognition, membrane binding, hetero-oligomerization).

Download full-text PDF

Source
http://dx.doi.org/10.1515/bmc-2022-0031DOI Listing

Publication Analysis

Top Keywords

tumor necrosis
8
necrosis factor
8
structure c-terminal
8
head tail?
4
tail? molecular
4
dynamics
4
molecular dynamics
4
dynamics approach
4
approach complex
4
complex structure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!