Digital light processing three-dimensional (DLP 3D) printing, as a promising manufacturing technology with the capability of fabricating 3D objects with complex shapes, typically develops inconsistent material properties due to the stair-stepping effect caused by weak layer-interface compatibility. Here, we report the regulation of the interface compatibility of the 3D-printing resin with versatile photocuring characteristics and the subsequent mechanical, thermal, and dielectric performances by introducing the interpenetration network (IPN). The preparation procedures, interface structure, flexural and tensile strength, modulus, and dielectric performances of the IPN are presented. The greater penetration depth in 3D printing and the subsequently thermocured epoxy network passing through the printing interface synergistically enhance the interface compatibility of 3D-printing samples, with an unobvious printing texture on the surface of the 3D-printing objects. The mechanical performances of the IPN demonstrate little anisotropy, with a bending strength twice as much as the photosensitive resin. Dynamic mechanical analysis of the IPN indicates that the storage modulus increases by 70% at room temperature and the glass transition temperature () increases by 57%. The dielectric performance of the IPN demonstrates a 36% decrease in dielectric constant and a 28.4% increase in breakdown strength. Molecular dynamics studies have shown that the IPN takes on higher nonbonded energies and hydrogen bonds than the photosensitive resin, indicating a stronger bonding force between molecular chains, thus leading to better physical properties. These results illustrate the effectiveness of the IPN toward enhanced 3D-printing interlayer compatibility for excellent mechanical, thermal, and electrical performances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c06514 | DOI Listing |
All-solid-state Li-ion batteries (ASSBs) represent a promising leap forward in battery technology, rapidly advancing in development. Among the various solid electrolytes, argyrodite thiophosphates Li6PS5X (X = Cl, Br, I) stand out due to their high ionic conductivity, structural flexibility, and compatibility with a range of electrode materials, making them ideal candidates for efficient and scalable battery applications. However, despite significant performance advancements, the sustainability and recycling of ASSBs remain underexplored, posing a critical challenge for achieving efficient circular processes.
View Article and Find Full Text PDFCardiovasc Eng Technol
January 2025
School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Rm. 718, Philadelphia, PA, 19104, USA.
Purpose: Computational models of the cardiovascular system continue to increase in complexity. As more elements of the physiology are captured in multiscale models, there is a need to efficiently integrate subsystems. The objective of this study is to demonstrate the effectiveness of a coupling methodology, called functional mock-up interface (FMI), as applied to multiscale cardiovascular modeling.
View Article and Find Full Text PDFNeuropsychologia
January 2025
McCausland Center for Brain Imaging, Department of Psychology, University of South Carolina, Columbia SC 29016, USA. Electronic address:
Visualization software is a critical component at every stage of neuroimaging research. It enables researchers to inspect raw or processed datasets for artifacts, to identify anomalies, to verify the accuracy of automated processing, and to interpret the location of statistical results within the complex structure of the human brain. Since 2006, MRIcron has provided a free, open-source, cross-platform tool designed to meet these needs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Beihang University, School of Chemistry, chemsitry, No 37 Xueyuan Rd, 100191, Beijing, CHINA.
Achieving multi-spectrum compatible stealth in radar-terahertz-infrared bands with robust performance has great prospects for both military and civilian applications. However, the progress of materials encounters substantial challenges due to the significant variability in frequency coupling properties across different electromagnetic wave bands. Here, this work presents the design of a multi-scale structure and fabricates a lightweight aerogel (silver nanowire@carbon, AgNW@C) consisting of a regular coaxial nano-cable, with silver nanowire as the core and amorphous-graphitized hybrid carbon as the outer-layer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China.
For silicon-based devices using dielectric oxides doped with rare earth ions, their electroluminescence (EL) performance relies on the sufficient carrier injection. In this work, the atomic GaO layers are inserted within the Er-doped GeO nanofilms fabricated by atomic layer deposition (ALD). Both Ga(CH) and Ga(CH) could realize the ALD growth of GaO onto the as-deposited GeO nanofilm with unaffected deposition rates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!