Splenomegaly historically has been assessed on imaging by use of potentially inaccurate linear measurements. Prior work tested a deep learning artificial intelligence (AI) tool that automatically segments the spleen to determine splenic volume. The purpose of this study is to apply the deep learning AI tool in a large screening population to establish volume-based splenomegaly thresholds. This retrospective study included a primary (screening) sample of 8901 patients (4235 men, 4666 women; mean age, 56 ± 10 [SD] years) who underwent CT colonoscopy ( = 7736) or renal donor CT ( = 1165) from April 2004 to January 2017 and a secondary sample of 104 patients (62 men, 42 women; mean age, 56 ± 8 years) with end-stage liver disease who underwent contrast-enhanced CT performed as part of evaluation for potential liver transplant from January 2011 to May 2013. The automated deep learning AI tool was used for spleen segmentation, to determine splenic volumes. Two radiologists independently reviewed a subset of segmentations. Weight-based volume thresholds for splenomegaly were derived using regression analysis. Performance of linear measurements was assessed. Frequency of splenomegaly in the secondary sample was determined using weight-based volumetric thresholds. In the primary sample, both observers confirmed splenectomy in 20 patients with an automated splenic volume of 0 mL; confirmed incomplete splenic coverage in 28 patients with a tool output error; and confirmed adequate segmentation in 21 patients with low volume (< 50 mL), 49 patients with high volume (> 600 mL), and 200 additional randomly selected patients. In 8853 patients included in analysis of splenic volumes (i.e., excluding a value of 0 mL or error values), the mean automated splenic volume was 216 ± 100 [SD] mL. The weight-based volumetric threshold (expressed in milliliters) for splenomegaly was calculated as (3.01 × weight [expressed as kilograms]) + 127; for weight greater than 125 kg, the splenomegaly threshold was constant (503 mL). Sensitivity and specificity for volume-defined splenomegaly were 13% and 100%, respectively, at a true craniocaudal length of 13 cm, and 78% and 88% for a maximum 3D length of 13 cm. In the secondary sample, both observers identified segmentation failure in one patient. The mean automated splenic volume in the 103 remaining patients was 796 ± 457 mL; 84% (87/103) of patients met the weight-based volume-defined splenomegaly threshold. We derived a weight-based volumetric threshold for splenomegaly using an automated AI-based tool. The AI tool could facilitate large-scale opportunistic screening for splenomegaly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2214/AJR.23.29478 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!