Interlayer electric fields in two-dimensional (2D) materials create photoelectron protecting barriers useful to mitigate electron-hole recombination. However, tuning the interlayer electric field remains challenging. Here, carbon-doped BiOCl (C:BiOCl) nanosheets are synthesized using a gas phase protocol, and n-type carriers are acquired as confirmed by the transconductance polarity of nanosheet field effect transistors. Thin C:BiOCl nanosheets show excellent 266 nm photodetector figures of merit, and an avalanche-like photocurrent is demonstrated. Decaying behaviors of photoelectrons pumped by a 266 nm laser pulse (266 nm photoelectrons) are observed using transient absorption spectroscopy, and a significant 266 nm photoelectron lifetime quality in C:BiOCl is presented. Built C:BiOCl models suggest that the interlayer electric field can be boosted by two different carbon substitutions at the inner and outer bismuth sites. This work reports a facile approach to increase the interlayer electric field in BiOCl for future UV-C photodetector applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c03331 | DOI Listing |
Nano Lett
January 2025
Department of Physics and Astronomy, University of California Riverside, Riverside, California 92521, United States.
Transition metal dichalcogenides (TMDs) with rhombohedral (3R) stacking order are excellent platforms to realize multiferroelectricity. In this work, we demonstrate the electrical switching of ferroelectric orders in bilayer, trilayer, and tetralayer 3R-MoS dual-gate devices by examining their reflection and photoluminescence (PL) responses under sweeping out-of-plane electric fields. We observe sharp shifts in excitonic spectra at different critical fields with pronounced hysteresis.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130, United States.
Recent studies have demonstrated the ability to switch weakly coupled interlayer magnetic orders by using electric polarization in insulating van der Waals heterostructures. However, controlling strongly coupled intralayer magnetic orders remains a significant challenge. In this work, we propose that frustrated multiferroic heterostructures can exhibit enhanced intralayer magnetoelectric coupling.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
High-performance bulk graphite (HPBG) that simultaneously integrates superior electrical conductivity and excellent strength is in high demand, yet it remains critical and challenging. Herein a novel approach is introduced utilizing MOF-derived nanoporous metal/carbon composites as precursors to circumvent this traditional trade-off. The resulting bulk graphite, composed of densely packed multilayered graphene sheets functionalized with diverse cobalt forms (nanoparticles, single atoms, and clusters), exhibits unprecedented electrical conductivity in all directions (in-plane: 7311 S cm⁻¹, out-of-plane: 5541 S cm⁻¹) and excellent mechanical strength (flexural: 101.
View Article and Find Full Text PDFNano Lett
January 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
In van der Waals (vdW) architectures of transition metal dichalcogenides (TMDCs), the coupling between interlayer exciton and quantum degrees of freedom opens unprecedented opportunities for excitonic physics. Taking the MoSe homobilayer as representative, we identify that the interlayer registry defines the nature and dynamics of the lowest-energy interlayer exciton. The large layer polarization () is proved, which ensures the formation of layer-resolved interlayer excitons.
View Article and Find Full Text PDFACS Nano
January 2025
Henan Academy of Sciences, Zhengzhou 450046, China.
Interlayer and defect engineering significantly affects the electrical conductivity and electromagnetic interference (EMI) shielding of TiCT MXene. Previous studies have prioritized the size of the intercalant over its synergy with chemical affinity, limiting the elucidation of the intercalation mechanism and the precise control of the interlayer spacing (spacing). Herein, we synthesize MXene aerogels with a tunable spacing and defect density using a series of amine molecules of different sizes and chemical affinities as intercalants and cross-linkers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!