Adding afferent vagus nerve stimulation to motor training via implanted electrodes can modify neuromotor adaptation depending on the stimulation timing. This study aimed to understand neuromotor adaptations when transcutaneous vagus nerve stimulation (tVNS) is applied at nonspecific timings during motor skill training in healthy humans. Twenty-four healthy young adults performed visuomotor training to match a complex force trajectory pattern with the index and little finger abduction forces concurrently. Participants were assigned to the tVNS group receiving tVNS at the tragus or the sham group receiving sham stimulation to the earlobe. The corresponding stimulations were applied at nonspecific timings throughout the training trials. Visuomotor tests were performed without tVNS or sham stimulation before and after training sessions across days. The reduction in the root mean square error (RMSE) against the trained force trajectory was attenuated in the tVNS group compared with the sham group, while its in-session reduction was not different between groups. The reduction of RMSE against an untrained trajectory pattern was not different between groups. No training effect was observed in corticospinal excitability or GABA-mediated intracortical inhibition. These findings suggest that adding tVNS at nonspecific timings during motor skill training can compromise motor adaptation but not transfer in healthy humans. Adding vagus nerve stimulation via implanted electrodes during motor training can facilitate motor recovery in disabled animals and humans. No study examined the effect of transcutaneous vagus nerve stimulation (tVNS) during training on neuromotor adaptation in healthy humans. We have found that adding tVNS at nonspecific timings during motor skill training can compromise motor adaptation but not transfer in healthy humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393334 | PMC |
http://dx.doi.org/10.1152/jn.00447.2022 | DOI Listing |
iScience
February 2025
Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
The vagus nerve is proposed to enable communication between the gut microbiome and the brain, but activity-based evidence is lacking. We find that mice reared germ-free exhibit decreased vagal tone relative to colonized controls, which is reversed via microbiota restoration. Perfusing antibiotics into the small intestines of conventional mice, but not germ-free mice, acutely decreases vagal activity which is restored upon re-perfusion with intestinal filtrates from conventional, but not germ-free, mice.
View Article and Find Full Text PDFCureus
December 2024
Clinical Research, National Institute of Neurology and Neurosurgery, Mexico City, MEX.
Anti-NMDA (N-methyl-D-aspartate) receptor encephalitis (ANRE) is a rare autoimmune condition targeting brain receptors, often linked to ovarian tumors in young women. In severe cases, it can lead to status epilepticus, but in sporadic cases, it may progress to super-refractory status epilepticus (SRSE), a dangerous state of continuous or repetitive seizures demanding urgent medical attention that continues or recurs more than 24 hours after the initiation of anesthetic therapy. We present a case report of anti-NMDA receptor limbic encephalitis-triggered SRSE terminated with vagus nerve stimulation (VNS) and titrated to high stimulation parameters in the immediate postoperative period.
View Article and Find Full Text PDFSurg Open Sci
January 2025
Department of Breast and Thyroid Surgery, Kitasato University Hospital/Kitasato University School of Medicine, Kanagawa, Japan.
Front Aging Neurosci
January 2025
Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Background: Transcutaneous vagus nerve stimulation (tVNS) has emerged as a novel noninvasive adjunct therapy for advanced Parkinson's disease (PD), yet no quantitative analysis had been conducted to assess its therapeutic effect.
Objectives: This review aimed to investigate the efficacy of tVNS on motor function, other potential clinical targets and its safety in various treatment conditions.
Methods: We searched six databases for randomized controlled trials (RCTs) that involved treating PD patients with tVNS.
Epileptic Disord
January 2025
Section of Neurology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!