Rate constant and branching ratio of the reaction of ethyl peroxy radicals with methyl peroxy radicals.

Phys Chem Chem Phys

Université Lille, CNRS, UMR 8522-PC2A-Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France.

Published: July 2023

The cross-reaction of ethyl peroxy radicals (CHO) with methyl peroxy radicals (CHO) (R1) has been studied using laser photolysis coupled to time resolved detection of the two different peroxy radicals by continuous wave cavity ring down spectroscopy (cw-CRDS) in their AÃ-X̃ electronic transition in the near-infrared region, CHO at 7602.25 cm, and CHO at 7488.13 cm. This detection scheme is not completely selective for both radicals, but it is demonstrated that it has great advantages compared to the widely used, but unselective UV absorption spectroscopy. Peroxy radicals were generated from the reaction of Cl-atoms with the appropriate hydrocarbon (CH and CH) in the presence of O, whereby Cl-atoms were generated by 351 nm photolysis of Cl. For different reasons detailed in the manuscript, all experiments were carried out under excess of CHO over CHO. The experimental results were best reproduced by an appropriate chemical model with a rate constant for the cross-reaction of = (3.8 ± 1.0) × 10 cm s and a yield for the radical channel, leading to CHO and CHO, of ( = 0.40 ± 0.20).

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp01141kDOI Listing

Publication Analysis

Top Keywords

peroxy radicals
24
rate constant
8
ethyl peroxy
8
methyl peroxy
8
cho
8
radicals cho
8
cho cho
8
radicals
7
peroxy
6
constant branching
4

Similar Publications

Dynamics of hydrogen shift reactions between peroxy radicals.

Phys Chem Chem Phys

January 2025

The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

Peroxy radicals are key intermediates in many atmospheric processes. Reactions between such radicals are of particular interest as they can lead to accretion products capable of participating in new particle formation (NPF). These reactions proceed through a tetroxide intermediate, which then decomposes to a complex of two alkoxy radicals and O, with spin conservation dictating that the complex must be formed in the triplet state.

View Article and Find Full Text PDF

The study investigated the degradation of 3-methoxy-1-propanol (3M1P) by OH using the M06-2X/6-311++G(d, p) level, with CCSD(T) single-point corrections. We focused on hydrogen atom abstraction from various alkyl groups within the molecule. The rate coefficient for 3M1P degradation was calculated from the sum of the rate coefficients corresponding to the removal of H-atoms from primary (-CH), secondary (-CH-), tertiary (-CH< ), and alcohol (-ΟH) groups.

View Article and Find Full Text PDF

The hydrogen shift reactions of peroxy radicals derived from the ȮH-initiated oxidation of three atmospherically important monoterpenes, limonene, α-pinene, and β-pinene, have been studied. The Bell-Evans-Polanyi relationship (BEPR), Marcus cross relationship (MCR), and Robert-Steel relationship (RSR) are employed to study the factors that contribute to the kinetics of the H-shift reactions. Our results show distinct kinetic behaviors based on the size of the transition-state ring, the functional group present at the H atom abstraction site, and the type of carbon-centered radical formed.

View Article and Find Full Text PDF

Reactions of a Prototypical Phenolic Antioxidant with Radicals in Polyethylene: Insights from Density Functional Theory.

J Phys Chem B

December 2024

PIMM, Arts et Metiers Institute of Technology, CNRS, CNAM, HESAM University, Paris 75013, France.

Phenolic antioxidants are widely used to prevent oxidation, which is the main degradation process for many polymers, in particular polyolefins among which polyethylene is the most employed one. Although it is generally understood that one of the main mechanisms by which phenolic antioxidants prevent or slow down oxidation is by deactivating radicals and preventing the formation of alkyl radicals, detailed understanding at the atomic scale of the hierarchy of radical reactions is still lacking. Here, we investigate the interaction of a prototypical phenolic antioxidant, butylated hydroxytoluene (BHT), with radicals in a polyethylene model by means of static and dynamic simulations based on density functional theory.

View Article and Find Full Text PDF

Investigation of the Cyclohexene Oxidation Mechanism Through the Direct Measurement of Organic Peroxy Radicals.

Environ Sci Technol

November 2024

State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.

Monoterpenes, the second most abundant biogenic volatile organic compounds globally, are crucial in forming secondary organic aerosols, making their oxidation mechanisms vital for addressing climate change and air pollution. This study utilized cyclohexene as a surrogate to explore first-generation products from its ozonolysis through laboratory experiments and mechanistic modeling. We employed proton transfer reaction mass spectrometry with NH ion sources (NH-CIMS) and a custom-built OH calibration source to quantify organic peroxy radicals (RO) and closed-shell species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!