The design and development of nanomaterials that could be used in nanomedicine are of fundamental importance to obtain smart nanosystems for the treatment of several diseases. Halloysite, because of its interesting features, represents a suitable nanomaterial for the delivery of different biologically active species. Among them, peptide nucleic acids (PNAs) have attracted considerable attention in recent decades for their potential applications in both molecular antisense diagnosis and as therapeutic agents, although up to now, the actual clinical applications have been very limited. Herein we report a systematic study on the supramolecular interaction of three differently charged PNAs with halloysite. Understanding the interaction mode of charged molecules with the clay surfaces represents a key factor for the future design and development of halloysite based materials which could be used for the delivery and subsequent intracellular release of PNA molecules. Thus, three different PNA tetramers, chosen as models, were synthesized and loaded onto the clay. The obtained nanomaterials were characterized using spectroscopic studies and thermogravimetric analysis, and their morphologies were studied using high angle annular dark field transmission electron microscopy (HAADF/STEM) coupled with Energy Dispersive X-ray spectroscopy (EDX). The aqueous mobility of the three different nanomaterials was investigated by dynamic light scattering (DLS) and -potential measurements. The release of PNA tetramers from the nanomaterials was investigated at two different pH values, mimicking physiological conditions. Finally, to better understand the stability of the synthesized PNAs and their interactions with HNTs, molecular modelling calculations were also performed. The obtained results showed that PNA tetramers interact in different ways with HNT surfaces according to their charge which influences their kinetic release in media mimicking physiological conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3tb00637aDOI Listing

Publication Analysis

Top Keywords

pna tetramers
12
charged pnas
8
design development
8
release pna
8
nanomaterials investigated
8
mimicking physiological
8
physiological conditions
8
exploiting interaction
4
halloysite
4
interaction halloysite
4

Similar Publications

The design and development of nanomaterials that could be used in nanomedicine are of fundamental importance to obtain smart nanosystems for the treatment of several diseases. Halloysite, because of its interesting features, represents a suitable nanomaterial for the delivery of different biologically active species. Among them, peptide nucleic acids (PNAs) have attracted considerable attention in recent decades for their potential applications in both molecular antisense diagnosis and as therapeutic agents, although up to now, the actual clinical applications have been very limited.

View Article and Find Full Text PDF

Nanocarrier based on halloysite and fluorescent probe for intracellular delivery of peptide nucleic acids.

J Colloid Interface Sci

August 2022

Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy. Electronic address:

The development of systems able to deliver genetic material into a target site is a challenge for modern medicine. Single-stranded peptide nucleic acids have attracted attention as promising therapeutic molecules for diagnostic and gene therapy. However, their poor cell membrane permeability represents a drawback for biomedical applications.

View Article and Find Full Text PDF

Controlled assembly of SNAP-PNA-fluorophore systems on DNA templates to produce fluorescence resonance energy transfer.

Bioconjug Chem

October 2014

School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom.

The SNAP protein is a widely used self-labeling tag that can be used for tracking protein localization and trafficking in living systems. A model system providing controlled alignment of SNAP-tag units can provide a new way to study clustering of fusion proteins. In this work, fluorescent SNAP-PNA conjugates were controllably assembled on DNA frameworks, forming dimers, trimers, and tetramers.

View Article and Find Full Text PDF

Presence of proline residues in the second position of the N-terminus in peptides restricts the usage of many aminopeptidases; however, aminopeptidase P (APP) is capable of removing this blockage. Based on the N-terminal amino acid sequences of APP from Streptomyces lavendulae, app gene was cloned in pET28a(+) and over expressed as a His-tagged protein with a molecular weight of ≈60 kDa in Escherichia coli BL21 (DE3). Nucleotide sequencing revealed a 1467 bp open reading frame encoding 488 amino acids (NCBI Accession No: GenBank: KC292272.

View Article and Find Full Text PDF

PpGalNacT2 participating in vanadium-induced HL-60 cell differentiation.

Mol Biol Rep

March 2011

Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, 215123 Jiangsu, People's Republic of China.

The current study demonstrates vanadium plays the role of antitumor, and its antitumor effect is dosage-dependent. N-acetyl-galactosamine-transferase 2 (polypeptide: N-acetyl-α-galactosaminyl-transferases 2, ppGalNAc-T2) is a member of ppGalNAcTs (polypeptide: N-acetyl-α-galactosaminyl-transferases) family, which proves to play a vital role in the tumor emergence and development process. In this study, we focused on ppGalNAc-T2 and vanadium and aimed to determine whether ppGalNAc-T2 is correlated with vanadium's antitumor effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!