Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Designing definite transition metal heterointerfaces is considered an effective strategy for the construction of efficient and robust oxygen evolution reaction (OER) electrocatalysts, but rather challenging. Herein, amorphous NiFe hydr(oxy)oxide nanosheet arrays (A-NiFe HNSAs) are grown in situ on the surface of a self-supporting Ni metal-organic frameworks (SNMs) electrode via a combination strategy of ion exchange and hydrolytic co-deposition for efficient and stable large-current-density water oxidation. The existence of the abundant metal-oxygen bonds on the heterointerfaces can not only be of great significance to alter the electronic structure and accelerate the reaction kinetics, but also enable the redistribution of Ni/Fe charge density to effectively control the adsorption behavior of important intermediates with a close to the optimal d-band center, dramatically narrowing the energy barriers of the OER rate-limiting steps. By optimizing the electrode structure, the A-NiFe HNSAs/SNMs-NF exhibits outstanding OER performance with small overpotentials of 223 and 251 mV at 100 and 500 mA cm , a low Tafel slope of 36.3 mV dec , and excellent durability during 120 h at 10 mA cm . This work significantly provides an avenue to understand and realize rationally designed heterointerface structures toward effective oxygen evolution in water-splitting applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202303303 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!