Most adhesives used in the wood-based panel (WBP) industry are petroleum-based and are associated with environmental impact and price fluctuations. Furthermore, most have potential adverse health impacts, such as formaldehyde emissions. This has led to interest from the WBP industry in developing adhesives with bio-based and/or non-hazardous components. This research focuses on the replacement of phenol-formaldehyde resins by Kraft lignin for phenol substitution and 5-hydroxymethylfurfural (5-HMF) for formaldehyde substitution. Resin development and optimization was carried out regarding varying parameters such as molar ratio, temperature or pH. The adhesive properties were analyzed using a rheometer, gel timer and a differential scanning calorimeter (DSC). The bonding performances were evaluated using an Automated Bonding Evaluation System (ABES). Particleboards were produced using a hot press, and their internal bond strength (IB) was evaluated according to SN EN 319. Hardening of the adhesive could be achieved at low temperatures by increasing or decreasing the pH. The most promising results were obtained at pH 13.7. The adhesive performances were improved by adding filler and extender (up to 28.6% based on dry resin) and several boards were produced reaching P1 requirements. A particleboard achieved a mean IB of 0.29 N/mm, almost reaching almost P2 requirements. However, adhesive reactivity and strength must be improved for industrial use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304249 | PMC |
http://dx.doi.org/10.3390/polym15122668 | DOI Listing |
Data Brief
December 2024
RISE PFI AS, Høgskoleringen 6B, 7491 Trondheim, Norway.
This data article summarizes the material properties of some added-lignin thermoformed pulps (ALTPs). This type of molded pulp is particularly suited for replacing plastics in environments, where moisture is encountered, as the lignin reduces the transport and adsorption of water. The dataset was measured on wet formed substrates with either softwood chemi-thermomechanical pulp (CTMP) or northern bleached softwood Kraft pulp (NBSK).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Malaysia. Electronic address:
The development of eco-friendly wood adhesives have gained more interest among adhesives industries due to the concerns about using carcinogenic formaldehyde and petroleum-based phenol in commercially available adhesives. Therefore, many studies have been done by using lignin to partially replace phenol and completely substitute formaldehyde with non-toxic glyoxal in a wood adhesive formulation. This study focused on using different percentages of lignin substitution (10 %, 30 % and 50 wt%) of alkaline and organosolv coconut husk lignin into soda lignin-phenol-glyoxal (SLPG), Kraft lignin-phenol-glyoxal (KLPG) and organosolv lignin-phenol-glyoxal (OLPG) adhesives.
View Article and Find Full Text PDFBraz J Microbiol
December 2024
Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
Pseudomonas sp. AU10 is an Antarctic psychrotolerant bacterium that produces a dye-decolorizing peroxidase (DyP-AU10). The recombinant enzyme (rDyP-AU10) is a heme-peroxidase that decolors dyes and modifies kraft lignin.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Paris-Est Creteil University, CNRS, ICMPE, UMR 7182, Thiais, 94320, France.
The design of a new visible-light methacrylated-based kraft lignin photosensitizer (MAcL) of iodonium salt (Iod) for the free-radical polymerization (FRP) of polyethylene glycol dimethacrylate (PEGDMA) under LEDs@405, 455, 470, 505, and 530 nm is reported. As demonstrated by laser flash photolysis (LFP) and electron paramagnetic resonance spin-trapping (EPR ST) experiments, the combination of MAcL with an electron acceptor (Iod) and trimethylolpropane tris(3-mercaptopropionate) (TT) used as a crosslinker, leads to the formation of highly efficient initiating radicals, i.e.
View Article and Find Full Text PDFChempluschem
December 2024
Centre National de la Recherche Scientifique, IRCELYON, FRANCE.
For the first time, the catalytic oxidation of Kraft lignin over a solid heterogeneous catalyst was studied in a continuous lab-scale trickle-bed reactor. This catalytic process is able to depolymerize Kraft lignin and produce phenolic compounds of interest such as vanillin. The impact of operating conditions such as temperature, residence time, contact time, catalyst loading and lignin concentration was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!