Surface-Enhanced Raman Scattering (SERS) Substrates Based on Ag-Nanoparticles and Ag-Nanoparticles/Poly (methyl methacrylate) Composites.

Polymers (Basel)

Centro de Investigaciones en Dispositivos Semiconductores (CIDS-ICUAP), Benemérita Universidad Autónoma de Puebla, P.O. Box 196, Puebla 72570, Mexico.

Published: June 2023

SERS substrates formed by spherical silver nanoparticles (Ag-NPs) with a 15 nm average diameter adsorbed on Si substrate at three different concentrations and Ag/PMMA composites formed by an opal of PMMA microspheres of 298 nm average diameter were synthesized. The Ag-NPs were varied at three different concentrations. We have observed from SEM micrographs, in the Ag/PMMA composites, the periodicity of the PMMA opals is slightly altered as the Ag-NP concentration is increased; as a consequence of this effect, the PBGs maxima shift toward longer wavelengths, decrease in intensity, and broaden as the Ag-NP concentration is increased in the composites. The performance of single Ag-NP and Ag/PMMA composites as SERS substrates was determined using methylene blue (MB) as a probe molecule with concentrations in the range of 0.5 µM to 2.5 µM. We found that in both single Ag-NP and Ag/PMMA composites as SERS substrates, the enhancement factor (EF) increases as the Ag-NP concentration is increased. We highlight that the SERS substrate with the highest concentration of Ag-NPs has the highest EF due to the formation of metallic clusters on the surface, which generates more "hot spots". The comparison of the EFs of the single Ag-NP with those of Ag/PMMA composite SERS substrates shows that the EFs of the former are nearly 10-fold higher than those of Ag/PMMA composites. This result is obtained probably due to the porosity of the PMMA microspheres that decreases the local electric field strength. Furthermore, PMMA exerts a shielding effect that affects the optical efficiency of Ag-NPs. Moreover, the metal-dielectric surface interaction contributes to the decrease in the EF. Other aspect to consider in our results is in relation to the difference in the EF of the Ag/PMMA composite and Ag-NP SERS substrates and is due to the existing mismatch between the frequency range of the PMMA opal stop band and the LSPR frequency range of the Ag metal nanoparticles adsorbed on the PMMA opal host matrix.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303496PMC
http://dx.doi.org/10.3390/polym15122624DOI Listing

Publication Analysis

Top Keywords

sers substrates
24
ag/pmma composites
20
composites sers
12
ag-np concentration
12
concentration increased
12
single ag-np
12
ag-np ag/pmma
12
average diameter
8
three concentrations
8
pmma microspheres
8

Similar Publications

Energy-level rich nanorings hybridizing Ag, Au and AgCl as high-performance SERS substrate for numerous molecules.

Talanta

January 2025

MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, China. Electronic address:

The current surface-enhanced Raman scattering (SERS) substrates typically feature a single energy level, posing challenges in coordinating electromagnetic enhancement (EM) and chemical enhancement (CM), thereby limiting the sensitive detection of numerous crucial target molecules. In this study, novel aggregated nanorings (a-NRs) hybridizing Ag, Au and AgCl are constructed as SERS substrates. On one hand, the obtained a-NRs exhibit robust localized surface plasmon resonance absorption, whose wavelength can be tuned to match three commonly used laser wavelengths (532, 633 and 785 nm) to gain strong EM effect.

View Article and Find Full Text PDF

Ultrasensitive detection of methylene blue by surface-enhanced Raman scattering (SERS) with Ag nanoparticle-decorated magnetic CoNi layered double hydroxides.

Anal Methods

January 2025

Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.

The unreasonable use of organic dye leads to excessive residues in environmental water, which seriously threatens human health and the natural environment. In this paper, a spherical flower-like magnetic FeO@CoNi layered double hydroxide@silver nanoparticle (FeO@CoNi LDH@Ag NPs) SERS substrate was successfully fabricated electrostatic self-assembly and applied for the sensitive detection of methylene blue (MB) in environmental water. The rapid concentration and separation of the SERS substrate from the water sample could be achieved using an external magnet.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering of R6G dimerization during self-healing of gel.

Mikrochim Acta

January 2025

Centre for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Islamabad, 44500, Pakistan.

Traditional surface-enhanced Raman scattering (SERS) substrates seeking uniformity and reproducibility of the Raman signal often assume and require that hot spots remain consistently stable during Raman testing. Recently, the non-uniform accumulation in SERS sample pre-concentration strategies have inspired the direct use of self-healing noble metal aerogels (NMAs), as the sample pretreatment presented in this work, and uncovered more diverse Raman information of substances during the dynamic process of laser irradiation. Rare characteristic peaks such as 820 cm⁻ for R6G within a specific concentration range were observed, and potential processes including R6G dimerization and desorption were analyzed.

View Article and Find Full Text PDF

Dynamic surface-enhanced Raman spectroscopy (SERS) is nowadays one of the most interesting applications of SERS, in particular for single molecule studies. In fact, it enables the study of real-time processes at the molecular level. This review summarizes the latest developments in dynamic SERS techniques and their applications, focusing on new instrumentation, data analysis methods, temporal resolution and sensitivity improvements, and novel substrates.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) technology has attracted more and more attention due to its high sensitivity, low water interference, and quick measurement. Constructing high-performance SERS substrates with high sensitivity, uniformity and reproducibility is of great importance to put the SERS technology into practical application. In this paper, we report a simple fabrication process to construct dense silver-coated PMMA nanoparticles-on-a-mirror SRES substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!