To obtain fully degradable and super-tough poly(lactide-co-glycolide) (PLGA) blends, biodegradable star-shaped PCL--PDLA plasticizers were synthesized using natural originated xylitol as initiator. These plasticizers were blended with PLGA to prepare transparent thin films. Effects of added star-shaped PCL--PDLA plasticizers on mechanical, morphological, and thermodynamic properties of PLGA/star-shaped PCL--PDLA blends were investigated. The stereocomplexation strong cross-linked network between PLLA segment and PDLA segment effectively enhanced interfacial adhesion between star-shaped PCL--PDLA plasticizers and PLGA matrix. With only 0.5 wt% addition of star-shaped PCL--PDLA (Mn = 5000 g/mol), elongation at break of the PLGA blend reached approximately 248%, without any considerable sacrifice over excellent mechanical strength and modulus of PLGA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302089PMC
http://dx.doi.org/10.3390/polym15122617DOI Listing

Publication Analysis

Top Keywords

star-shaped pcl--pdla
20
pcl--pdla plasticizers
16
polylactide-co-glycolide plga
8
transparent thin
8
thin films
8
plga
6
pcl--pdla
6
star-shaped
5
plasticizers
5
super-tough biodegradable
4

Similar Publications

Gold-Cerium bimetallic Star-Shaped nanoplatform for synergistic tumor therapy with nanozyme Catalytic/Photothermal/Chemotherapy.

J Colloid Interface Sci

January 2025

The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234 China. Electronic address:

A gold-cerium bimetallic asteroid nanoplatform (CeO@GNSs/Myr-HA) was obtained by electrostatically adsorbing ultra-small cerium dioxide (CeO) onto gold nanostars (GNSs) and further loading myricetin (Myr) and hyaluronic acid (HA). This nanoplatform exhibited three types of enzymatic properties-that is, GOD (glucose-oxidase), POD (peroxidase) and GSH-Ox (glutathione oxidase) mimicking catalytic activities. These enzymatic properties work together to effectively induce apoptosis in tumor cells.

View Article and Find Full Text PDF

In this study, square-star-shaped leaf-like BiVO nanomaterials were successfully synthesized using a conventional hydrothermal method. The microstructure, elemental composition, and gas-sensing performance of the materials were thoroughly investigated. Morphological analysis revealed that BiVO prepared at different reaction temperatures exhibited square-star-shaped leaf-like structures, with the most regular and dense structures formed at 150 °C, exhibiting a large specific surface area of 2.

View Article and Find Full Text PDF

Cryptococcal-associated immune reconstitution inflammatory syndrome (C-IRIS) is a clinical worsening or new presentation of cryptococcal disease following the initiation of antiretroviral therapy. C-IRIS is primarily driven by an influx of pathological CD4 T cells, which triggers a hyperinflammatory response. The murine model of C-IRIS is a way to study the disease in mice and understand how the immune system triggers life-threatening outcomes in patients.

View Article and Find Full Text PDF

Highly sensitive split ring resonator-based sensor for quality monitoring of edible oils.

Sci Rep

January 2025

Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.

This research presents the design and analysis of a compact metamaterial (MTM)-based star-shaped split-ring resonator (SRR) enclosed in a square, constructed on a cost-effective substrate for liquid chemical sensing applications. The designed structure has dimensions of 10 × 10 mm and is optimized for detecting adulteration in edible oils. When the sample holder is filled with different percentages of oil samples, the resonance frequency of the MTM-based SRR sensor shift significantly.

View Article and Find Full Text PDF

Attachment of three different heterocycles with electron donor or acceptor character to a central 1,3,5-triazine core generates readily soluble side-chain free dyes with two displaying soft crystalline mesomorphism and one displaying a nematic liquid crystal phase as confirmed by polarized optical microscopy, calorimetry, gravimetric analysis, and powder X-ray diffraction. Equally intriguing is the dyes' relatively strong electronic communication between donor and acceptor subchromophores that are meta-conjugated to one another, which is experimentally observed as a broad intramolecular charge-transfer absorption that can extend over 100 nm past the most intense absorption event and is computationally confirmed through density functional theory (DFT) evaluations of the molecular ground- and excited-state properties. This molecular design permits the preparation of dyes with panchromatic absorption not just based on the additive absorption of individual subchromophores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!