As the mechanical properties of resin-based dental composite materials are highly relevant in clinical practice, diverse strategies for their potential enhancement have been proposed in the extant literature, aiming to facilitate their reliable use in dental medicine. In this context, the focus is primarily given to the mechanical properties with the greatest influence on clinical success, i.e., the longevity of the filling in the patient's mouth and its ability to withstand very strong masticatory forces. Guided by these objectives, the goal of the present study was to ascertain whether the reinforcement of dental composite resins with electrospun polyamide (PA) nanofibers would improve the mechanical strength of dental restoration materials. For this purpose, light-cure dental composite resins were interspersed with one and two layers comprising PA nanofibers in order to investigate the influence of such reinforcement on the mechanical properties of the resulting hybrid resins. One set of the obtained samples was investigated as prepared, while another set was immersed in artificial saliva for 14 days and was subsequently subjected to the same set of analyses, namely Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). Findings yielded by the FTIR analysis confirmed the structure of the produced dental composite resin material. They also provided evidence that, while the presence of PA nanofibers did not influence the curing process, it strengthened the dental composite resin. Moreover, flexural strength measurements revealed that the inclusion of a 16 μm-thick PA nanolayer enabled the dental composite resin to withstand a load of 3.2 MPa. These findings were supported by the SEM results, which further indicated that immersing the resin in saline solution resulted in a more compact composite material structure. Finally, DSC results indicated that as-prepared as well as saline-treated reinforced samples had a lower glass transition temperature (Tg) compared to pure resin. Specifically, while pure resin had a Tg of 61.6 °C, each additional PA nanolayer decreased the Tg by about 2 °C, while the further reduction was obtained when samples were immersed in saline for 14 days. These results show that electrospinning is a facile method for producing different nanofibers that can be incorporated into resin-based dental composite materials to modify their mechanical properties. Moreover, while their inclusion strengthens the resin-based dental composite materials, it does not affect the course and outcome of the polymerization reaction, which is an important factor for their use in clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303635 | PMC |
http://dx.doi.org/10.3390/polym15122598 | DOI Listing |
Food Chem
December 2024
Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia. Electronic address:
Sargassum polycystum (S. polycystum) is a brown macroalga with a high phytochemical content, making it a nutritious and bioactive food source. However, information on factors contributing to health benefits, like antioxidants and cytotoxicity, is less explored for Malaysian S.
View Article and Find Full Text PDFDent Mater
January 2025
KU Leuven, Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry, Kapucijnenvoer 7, 3000 Leuven, Belgium. Electronic address:
Objectives: To evaluate the effect of different zirconia compositions and manufacturing processes on the light irradiance (LI), to measure the degree of conversion (DC) of solely light-curing restorative composite underneath these zirconia grades and to evaluate the respective zirconia microstructures.
Methods: Six dental zirconia grades (GC HT, GC UHT [GC]; Katana HT, Katana UTML [Kuraray Noritake]; Lava Esthetic, Lava Plus [3 M Oral Care]) were cut and sintered per manufacturer instructions. One 3D-printed zirconia grade (XJet [XJET]) was prepared according to previous research.
Dent Mater
January 2025
Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA. Electronic address:
Objective: This study compared the fracture load, stress distribution, and survival probability under cyclic loading of extensively restored teeth treated with multisonic irrigation with those treated with conventional instrumentation, with or without a post.
Methods: Mesial-occlusal-distal cavities were prepared in 30 human mandibular premolars. The teeth were randomly divided into 3 groups of 10 based on the endodontic and restorative procedures: (1) Root canal treatment (RCT) followed by resin composite restoration (control group), (2) RCT followed by a glass fiber post restoration (conventional group), and (3) minimal instrumentation plus multisonic irrigation followed by resin composite restoration (GW group).
Dent Mater
January 2025
Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518108, China. Electronic address:
Objective: Photopolymerized resin composites are widely used as dental filling materials. However, the shrinkage stress generated during photopolymerization can lead to marginal microcracks and eventual restoration failure. Accurate assessment of the stress evolution in dental restorations, particularly in complex cavity geometries, is critical for improving the performance and longevity of the dental filling materials.
View Article and Find Full Text PDFEur J Dent
December 2024
Department of Conservative Dentistry, Faculty of Dentistry, October University for Modern Sciences and Arts, Giza, Egypt.
Objective: Continuous advancements in composite resin materials have revolutionized and expanded its clinical use, improving its physical and mechanical properties. Attaining and retaining surface texture and gloss are crucial for the long-term durability of the composite resin material. This study investigated the supra-nanospherical filler composite material compared with different composite resin materials immersed in different beverages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!