Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Colorectal cancer (CRC) is among the most deadly cancers worldwide. Current therapeutic strategies have low success rates and several side effects. This relevant clinical problem requires the discovery of new and more effective therapeutic alternatives. Ruthenium drugs have arisen as one of the most promising metallodrugs, due to their high selectivity to cancer cells. In this work we studied, for the first time, the anticancer properties and mechanisms of action of four lead Ru-cyclopentadienyl compounds, namely , , and , in two CRC-derived cell lines (SW480 and RKO). Biological assays were performed on these CRC cell lines to evaluate cellular distribution, colony formation, cell cycle, proliferation, apoptosis, and motility, as well as cytoskeleton and mitochondrial alterations. Our results show that all the compounds displayed high bioactivity and selectivity, as shown by low half-maximal inhibitory concentrations (IC) against CRC cells. We observed that all the Ru compounds have different intracellular distributions. In addition, they inhibit to a high extent the proliferation of CRC cells by decreasing clonogenic ability and inducing cell cycle arrest. , , and also induce apoptosis, increase the levels of reactive oxygen species, lead to mitochondrial dysfunction, induce actin cytoskeleton alterations, and inhibit cellular motility. A proteomic study revealed that these compounds cause modifications in several cellular proteins associated with the phenotypic alterations observed. Overall, we demonstrate that Ru compounds, especially and , display promising anticancer activity in CRC cells with a high potential to be used as new metallodrugs for CRC therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302444 | PMC |
http://dx.doi.org/10.3390/pharmaceutics15061731 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!