(1) Background: Increasing attention has been given to applying nanosized iron oxide nanoparticles (IOPs) to treat iron deficiency anemia (IDA). Chronic kidney disease (CKD) patients who suffer from IDA often need long-term iron supplements. We aim to evaluate the safety and therapeutic effect of MPB-1523, a novel IOPs, in anemic CKD mice and to monitor iron storage by magnetic resonance (MR) imaging. (2) Methods: MPB-1523 was intraperitoneally delivered to the CKD and sham mice, and blood were collected for hematocrit, iron storage, cytokine assays, and MR imaging throughout the study. (3) Results: The hematocrit levels of CKD and sham mice dropped initially but increased gradually to reach a steady value 60 days after IOP injection. The body iron storage indicator, ferritin gradually rose and total iron-binding capacity stabilized 30 days after IOP injection. No significant inflammation or oxidative stress were observed in both groups. By T2-weighted MR imaging, the liver signal intensity gradually increased in both groups but was more pronounced in the CKD group, indicating aggressive utilization of MPB-1523. MR imaging, histology and electron microscopy showed MPB-1523 is liver-specific. (4) Conclusions: MPB-1523 can serve as a long-term iron supplement and is monitored by MR imaging. Our results have strong translatability to the clinic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301580PMC
http://dx.doi.org/10.3390/pharmaceutics15061714DOI Listing

Publication Analysis

Top Keywords

iron storage
12
iron
8
iron oxide
8
long-term iron
8
ckd sham
8
sham mice
8
days iop
8
iop injection
8
ckd
5
mpb-1523
5

Similar Publications

Unlabelled: The performance of the Liofilchem Compact Antimicrobial Susceptibility Panel (ComASP) Cefiderocol was evaluated in a multicenter study. Enterobacterales, , and clinical isolates and challenge isolates were tested by three and one sites, respectively. Minimum inhibitory concentration (MIC) testing was performed by the Clinical and Laboratory Standards Institute (CLSI) broth microdilution and ComASP, which included two reading endpoints (CLSI read; MIC is the first well in which reduction of growth is <1 mm or light haze/faint turbidity] and ComASP [ComASP read; MIC is the first well at which 100% inhibition of growth occurs]).

View Article and Find Full Text PDF

Intracellular metal ion-based chemistry for programmed cell death.

Chem Soc Rev

January 2025

Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.

Intracellular metal ions play essential roles in multiple physiological processes, including catalytic action, diverse cellular processes, intracellular signaling, and electron transfer. It is crucial to maintain intracellular metal ion homeostasis which is achieved by the subtle balance of storage and release of metal ions intracellularly along with the influx and efflux of metal ions at the interface of the cell membrane. Dysregulation of intracellular metal ions has been identified as a key mechanism in triggering programmed cell death (PCD).

View Article and Find Full Text PDF

Iron-oxide (FeO) nanoneedles were first in situ grown on the surface of carbon nanofibers (CNFs) using hydrothermal and N annealing process, and then polyaniline (PANI) was coated on the FeO nanoneedles to form network-like nanorods through dilute solution polymerization. The PANI/FeO/CNFs binder-free electrode exhibited a high specific capacitance of 603 F/g at 1 A/g with good rate capability. (The capacitance loss was about 48.

View Article and Find Full Text PDF

Transition metal oxides (TMOs), especially zinc- and iron-based materials, are known to be one of the most innovative anode materials based on their high theoretical capacity, low price and abundant natural reserves. However, the application of these materials is limited by poor electronic conductivity, slow ion mobility and large structural transformations during charging/discharging processes. To overcome these drawbacks, sacrificial template technology has been proposed as a promising strategy to optimize the electrochemical performance and structure stability of TMOs, showing its potential especially in the storage design of lithium-ion batteries (LIBs).

View Article and Find Full Text PDF

Biocontrol mechanisms of antagonistic yeasts on postharvest fruits and vegetables and the approaches to enhance the biocontrol potential of antagonistic yeasts.

Int J Food Microbiol

December 2024

National Key Laboratory of Tropical Crop Breeding, School of Tropical Agriculture and Foresty, Hainan University, Haikou 570228, Hainan, China. Electronic address:

During storage and transportation, fruits and vegetables are susceptible to various pathogens, leading to quality degradation and significant economic losses. Currently, chemical pesticides are primarily used for control; however, their overuse poses serious threats to human health and causes environmental pollution. Biocontrol, known for its environmentally friendly characteristics, has been extensively studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!