Most marketed HA-based dermal fillers use chemical cross-linking to improve mechanical properties and extend their lifetime in vivo; however, stiffer products with higher elasticity require an increased extrusion force for injection in clinical practice. To balance longevity and injectability, we propose a thermosensitive dermal filler, injectable as a low viscosity fluid that undergoes gelation in situ upon injection. To this end, HA was conjugated via a linker to poly(N-isopropylacrylamide) (pNIPAM), a thermosensitive polymer using "green chemistry", with water as the solvent. HA-L-pNIPAM hydrogels showed a comparatively low viscosity (G' was 105.1 and 233 for Candidate1 and Belotero Volume, respectively) at room temperature and spontaneously formed a stiffer gel with submicron structure at body temperature. Hydrogel formulations exhibited superior resistance against enzymatic and oxidative degradation and could be administered using a comparatively lower injection force (49 N and >100 N for Candidate 1 and Belotero Volume, respectively) with a 32G needle. Formulations were biocompatible (viability of L929 mouse fibroblasts was >100% and ~85% for HA-L-pNIPAM hydrogel aqueous extract and their degradation product, respectively), and offered an extended residence time (up to 72 h) at the injection site. This property could potentially be exploited to develop sustained release drug delivery systems for the management of dermatologic and systemic disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302034 | PMC |
http://dx.doi.org/10.3390/pharmaceutics15061708 | DOI Listing |
Sensors (Basel)
December 2024
Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland.
In this paper, we demonstrate that torsional surface elastic waves can propagate along the curved surface of a metamaterial elastic rod (cylinder) embedded in a conventional elastic medium. The crucial parameter of the metamaterial rod is its elastic compliance s44(1)ω, which varies as a function of frequency ω analogously to the dielectric function εω in Drude's model of metals. As a consequence, the elastic compliance s44(1)ω can take negative values s44(1)ω<0 as a function of frequency ω.
View Article and Find Full Text PDFFoods
January 2025
Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland.
Palm and palm kernel oils are preferred ingredients in industrial food processing for baked goods and chocolate-based desserts due to their unique properties, such as their distinctive melting behaviors. However, ongoing concerns about the social and environmental sustainability of palm oil production, coupled with consumer demands for palm oil-free products, have prompted the industry to seek alternatives which avoid the use of other tropical or hydrogenated fats. This project investigated replacing palm oils with chemically unhardened Swiss sunflower or rapeseed oils.
View Article and Find Full Text PDFFoods
December 2024
National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
High dietary fat food such as mayonnaise (70-80% oil content) can induce obesity and cardiovascular diseases, thus reducing their oil content is required. However, the development of low-fat mayonnaise is still a big challenge since reducing oil content will increase the fluidity, induce phase separation and decrease the stability of mayonnaise. Herein, we provide a novel strategy for developing yolk-casein-based low-fat mayonnaise (30% oil content) with a similar texture to commercial high-fat mayonnaise through post-acidification.
View Article and Find Full Text PDFFoods
December 2024
College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
A dysphagia diet is a special dietary programme. The development and design of foods for dysphagia should consider both swallowing safety and food nutritional quality. In this study, we investigated the rheological properties (viscosity, thixotropy, and viscoelasticity), textural properties, and swallowing behaviour of commercially available natural, pregelatinised, acetylated, and phosphorylated maize starch and tapioca starch.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Gansu Yuanlong Road and Bridge Mechanized Highway Engineering Co., Ltd., Lanzhou 730070, China.
In recent years, research on self-compacting concrete (SCC) has gradually shifted towards high-strength development, while high-strength self-compacting concrete has been widely used in applications such as precast bridge components and high-rise building projects. Using manufactured sand as an aggregate can effectively address the challenges posed by the depletion of natural sand resources. This study optimized the mix design for high-strength self-compacting concrete with manufactured sand (MSH-SCC) and explored the effects of the fine aggregate replacement rate, sand ratio, and maximum particle size of coarse aggregate on the performance of MSH-SCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!