Raman spectroscopy is a well-established technique for the molecular characterisation of samples and does not require extensive pre-analytical processing for complex cosmetic products. As an illustration of its potential, this study investigates the quantitative performance of Raman spectroscopy coupled with partial least squares regression (PLSR) for the analysis of Alginate nanoencapsulated Piperonyl Esters (ANC-PE) incorporated into a hydrogel. A total of 96 ANC-PE samples covering a 0.4% /-8.3% / PE concentration range have been prepared and analysed. Despite the complex formulation of the sample, the spectral features of the PE can be detected and used to quantify the concentrations. Using a leave-K-out cross-validation approach, samples were divided into a training set ( = 64) and a test set, samples that were previously unknown to the PLSR model ( = 32). The root mean square error of cross-validation (RMSECV) and prediction (RMSEP) was evaluated to be 0.142% (/ PE) and 0.148% (/ PE), respectively. The accuracy of the prediction model was further evaluated by the percent relative error calculated from the predicted concentration compared to the true value, yielding values of 3.58% for the training set and 3.67% for the test set. The outcome of the analysis demonstrated the analytical power of Raman to obtain label-free, non-destructive quantification of the active cosmetic ingredient, presently PE, in complex formulations, holding promise for future analytical quality control (AQC) applications in the cosmetics industry with rapid and consumable-free analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304590 | PMC |
http://dx.doi.org/10.3390/pharmaceutics15061571 | DOI Listing |
RSC Adv
January 2025
Département de Chimie, Faculté des Sciences et de Génie, Université Laval Québec QC G1V 0A6 Canada.
Blood carries some of the most valuable biomarkers for disease screening as it interacts with various tissues and organs in the body. Human blood serum is a reservoir of high molecular weight fraction (HMWF) and low molecular weight fraction (LMWF) proteins. The LMWF proteins are considered disease marker proteins and are often suppressed by HMWF proteins during analysis.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Tea Science, Yunnan Agricultural University, Kunming 650500, China.
This research prepared gelatinized waxy maize starch (WMS), low-amylose maize starch (LAS), and high-amylose maize starch (HAS) with different glutathione (GSH) content (5, 10, and 15 %) using high hydrostatic pressure (HHP) at 600 MPa. Scanning electron microscopy (SEM) revealed damaged morphology of WMS and complete swelled granules of LAS and HAS with different degree of gelatinization (DG) values, 92.86, 59.
View Article and Find Full Text PDFJ Biomed Opt
January 2025
McGill University, Montreal Neurological Institute-Hospital, Montreal, Quebec, Canada.
Significance: Maximal safe resection of brain tumors can be performed by neurosurgeons through the use of accurate and practical guidance tools that provide real-time information during surgery. Current established adjuvant intraoperative technologies include neuronavigation guidance, intraoperative imaging (MRI and ultrasound), and 5-ALA for fluorescence-guided surgery.
Aim: We have developed intraoperative Raman spectroscopy as a real-time decision support system for neurosurgical guidance in brain tumors.
Heliyon
January 2025
Department of Chemical Engineering, Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Kingdom of Saudi Arabia.
Detection of biomolecules, Glutathione (GSH) in particular, is important because it helps assess antioxidant capacity, cellular protection, detoxification processes, and potential disease associations. Monitoring glutathione levels can provide valuable information about overall health and well-being. Many medical disorders have been connected to glutathione levels.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
The structural stability of the energetic material 2,2',4,4',6,6'-hexanitrostilbene (-HNS) under high pressure is critical for optimizing its detonation performance and low sensitivity. However, its structural response to external pressure has not been sufficiently investigated. In this study, high-pressure single-crystal X-ray diffraction data of -HNS demonstrate that the sample exhibits pronounced anisotropic strain, demonstrating an unusual negative linear compressibility (NLC) along the axis, with a coefficient of -4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!