Plant-parasitic nematodes (PPNs) pose a threat to global food security in both the developed and developing worlds. PPNs cause crop losses worth a total of more than USD 150 billion worldwide. The sedentary root-knot nematodes (RKNs) also cause severe damage to various agricultural crops and establish compatible relationships with a broad range of host plants. This review aims to provide a broad overview of the strategies used to identify the morpho-physiological and molecular events that occur during RKN parasitism. It describes the most current developments in the transcriptomic, proteomic, and metabolomic strategies of nematodes, which are important for understanding compatible interactions of plants and nematodes, and several strategies for enhancing plant resistance against RKNs. We will highlight recent rapid advances in molecular strategies, such as gene-silencing technologies, RNA interference (RNAi), and small interfering RNA (siRNA) effector proteins, that are leading to considerable progress in understanding the mechanism of plant-nematode interactions. We also take into account genetic engineering strategies, such as targeted genome editing techniques, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas-9) system, and quantitative trait loci (QTL), to enhance the resistance of plants against nematodes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304871 | PMC |
http://dx.doi.org/10.3390/plants12122387 | DOI Listing |
Sci Data
January 2025
Shaanxi Key Laboratory of Plant Nematology, Bio-Agriculture Institute of Shaanxi, Xi'an, China.
Ditylenchus destructor, commonly known as the potato rot nematode, is a significant plant-parasitic pathogen affecting over 120 plant species globally. Effective control measures for D. destructor are limited, underscoring the need a high-quality reference genome to understand its pathogenic mechanisms.
View Article and Find Full Text PDFCarbohydr Res
January 2025
Institut für Parasitologie, Veterinärmedizinische Universität, A-1210, Wien, Austria. Electronic address:
Nematodes, commonly known as roundworms, are among the most prevalent and diverse multicellular organisms on Earth, belonging to the large phylum Nematoda. In addition to free-living species, many nematodes are parasitic, infecting plants, animals, and humans. Nematodes possess a wide array of genes responsible for carbohydrate metabolism and glycosylation.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
RNA interference (RNAi) mediates antiviral defense in many eukaryotes. Caenorhabditis elegans mutants that disable RNAi are more sensitive to viral infection. Many mutants that enhance RNAi have also been identified; these mutations may reveal genes that are normally down-regulated in antiviral defense.
View Article and Find Full Text PDFCommun Biol
January 2025
National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
Root-knot nematodes (RKNs) of the genus Meloidogyne pose the most significant threats to global food security due to their destructive nature as plant-parasitic nematodes. Although significant attention has been devoted to investigating the gene transcription profiling of RKNs, our understanding of the translational landscape of RKNs remains limited. In this study, we elucidated the translational landscape of Meloidogyne incognita through the integration of translatome, transcriptome and quantitative proteome analyses.
View Article and Find Full Text PDFJ Nematol
March 2024
Department of Entomology and Nematology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, 33598, USA.
Many root-knot nematode (RKN) species in the genus occur in Florida, including , a species able to overcome RKN resistance genes in many crops. The distribution of these nematodes in horticultural crops is not well known. A RKN survey was conducted in South and Central Florida aiming to: (i) identify RKN infecting vegetables, fruit, and other crops; (ii) document host plants; (iii) determine RKN distribution; and (iv) gain insight on the relatedness of obtained in this study with other populations from the USA and other countries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!