The accurate identification and classification of soybean mutant lines is essential for developing new plant varieties through mutation breeding. However, most existing studies have focused on the classification of soybean varieties. Distinguishing mutant lines solely by their seeds can be challenging due to their high genetic similarities. Therefore, in this paper, we designed a dual-branch convolutional neural network (CNN) composed of two identical single CNNs to fuse the image features of pods and seeds together to solve the soybean mutant line classification problem. Four single CNNs (AlexNet, GoogLeNet, ResNet18, and ResNet50) were used to extract features, and the output features were fused and input into the classifier for classification. The results demonstrate that dual-branch CNNs outperform single CNNs, with the dual-ResNet50 fusion framework achieving a 90.22 ± 0.19% classification rate. We also identified the most similar mutant lines and genetic relationships between certain soybean lines using a clustering tree and t-distributed stochastic neighbor embedding algorithm. Our study represents one of the primary efforts to combine various organs for the identification of soybean mutant lines. The findings of this investigation provide a new path to select potential lines for soybean mutation breeding and signify a meaningful advancement in the propagation of soybean mutant line recognition technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303501PMC
http://dx.doi.org/10.3390/plants12122315DOI Listing

Publication Analysis

Top Keywords

soybean mutant
20
mutant lines
20
single cnns
12
identification soybean
8
fusion framework
8
classification soybean
8
mutation breeding
8
mutant
7
lines
7
soybean
7

Similar Publications

GmERF13 mediates salt inhibition of nodulation through interacting with GmLBD16a in soybean.

Nat Commun

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, Shandong, China.

While the genetic regulation of nodule formation has been well explored, the molecular mechanisms by which abiotic stresses, such as salt stress, impede nodule formation remain largely elusive. Here, we identify four APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors, GmERF13s, that are induced by salt stress and play key roles in salt-repressed nodulation. Loss of GmERF13 function increases nodule density, while its overexpression suppresses nodulation.

View Article and Find Full Text PDF

Phytochrome-interacting factors (PIFs) belong to a subfamily of the bHLH transcription factor family and play a pivotal role in plant light signal transduction, hormone signal pathways, and the modulation of plant responses to various abiotic stresses. The soybean (Glycine max) is a significant food crop, providing essential oil and nutrients. Additionally, it is a vital industrial raw material and a lucrative cash crop.

View Article and Find Full Text PDF

The beta-rhizobial strain Paraburkholderia phymatum STM815 is noteworthy for its wide host range in nodulating legumes, primarily mimosoids (over 50 different species) but also some papilionoids. It cannot, however, nodulate soybean (Glycine max [L.] Merr.

View Article and Find Full Text PDF

Background: Vegetable oils are primarily composed of unsaturated fatty acids. Soybean [Glycine max (L.) Merr.

View Article and Find Full Text PDF

CRISPR/Cas9-mediated mutagenesis of SEED FATTY ACID REDUCER genes significantly increased seed oil content in soybean.

Plant Cell Physiol

December 2024

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Increasing seed oil content (SOC) is an important breeding goal for soybean breeding. While significant efforts have been made to improve SOC through metabolic pathway engineering, research to increase soybean SOC by reducing lipid degradation and fatty acid (FA) decomposition during seed maturation process is limited. Seed Fatty Acid Reducers (SFAR) are members of the GDSL enzyme family and play a crucial role in lipid metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!