Tocotrienol-Rich Fraction Ameliorates the Aluminium Chloride-Induced Neurovascular Dysfunction-Associated Vascular Dementia in Rats.

Pharmaceuticals (Basel)

Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia.

Published: June 2023

Neurovascular dysfunction leads to the second most common type of dementia, i.e., vascular dementia (VaD). Toxic metals, such as aluminium, increase the risk of neurovascular dysfunction-associated VaD. Hence, we hypothesized that a natural antioxidant derived from palm oil, i.e., tocotrienol-rich fraction (TRF), can attenuate the aluminium chloride (AlCl)-induced VaD in rats. Rats were induced with AlCl (150 mg/kg) intraperitoneally for seven days followed by TRF treatment for twenty-one days. The elevated plus maze test was performed for memory assessment. Serum nitrite and plasma myeloperoxidase (MPO) levels were measured as biomarkers for endothelial dysfunction and small vessel disease determination. Thiobarbituric acid reactive substance (TBARS) was determined as brain oxidative stress marker. Platelet-derived growth factor-C (PDGF-C) expression in the hippocampus was identified using immunohistochemistry for detecting the neovascularisation process. AlCl showed a significant decrease in memory and serum nitrite levels, while MPO and TBARS levels were increased; moreover, PDGF-C was not expressed in the hippocampus. However, TRF treatment significantly improved memory, increased serum nitrite, decreased MPO and TBARS, and expressed PDGF-C in hippocampus. Thus, the results imply that TRF reduces brain oxidative stress, improves endothelial function, facilitates hippocampus PDGF-C expression for neovascularisation process, protects neurons, and improves memory in neurovascular dysfunction-associated VaD rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303399PMC
http://dx.doi.org/10.3390/ph16060828DOI Listing

Publication Analysis

Top Keywords

neurovascular dysfunction-associated
12
serum nitrite
12
tocotrienol-rich fraction
8
vascular dementia
8
dysfunction-associated vad
8
vad rats
8
trf treatment
8
brain oxidative
8
oxidative stress
8
pdgf-c expression
8

Similar Publications

Neurovascular coupling dysfunction associated with inflammatory factors in sudden sensorineural hearing loss.

Neuroscience

January 2025

Department of Radiology, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China. Electronic address:

Purpose: The neuropathologic mechanisms of sudden sensorineural hearing loss (SSNHL) are unknown. The aim of this study was to investigate the alterations of neurovascular coupling (NVC) in patients with SSNHL and its association with hematologic inflammatory factors.

Methods: The amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), and degree centrality (DC) were calculated in 48 patients with SSNHL and 54 age-, gender-, and education-matched healthy control (HC), and also utilized the arterial spin labeling imaging (ASL) to calculate cerebral blood flow (CBF).

View Article and Find Full Text PDF

Neurovascular coupling dysfunction associated with cognitive impairment in presbycusis.

Brain Commun

June 2024

Department of Medical Imaging, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Nanjing Medical University, Wuxi 214023, China.

The neuropathological mechanism underlying presbycusis remains unclear. This study aimed to illustrate the mechanism of neurovascular coupling associated with cognitive impairment in patients with presbycusis. We assessed the coupling of cerebral blood perfusion with spontaneous neuronal activity by calculating the correlation coefficients between cerebral blood flow and blood oxygen level-dependent-derived quantitative maps (amplitude of low-frequency fluctuation, fractional amplitude of low-frequency fluctuation, regional homogeneity, degree centrality).

View Article and Find Full Text PDF

Introduction: Amyloid beta (Aβ) impairs the cerebral blood flow (CBF) increase induced by neural activity (functional hyperemia). Tissue plasminogen activator (tPA) is required for functional hyperemia, and in mouse models of Aβ accumulation tPA deficiency contributes to neurovascular and cognitive impairment. However, it remains unknown if tPA supplementation can rescue Aβ-induced neurovascular and cognitive dysfunction.

View Article and Find Full Text PDF

Non-invasive vagus nerve stimulation (nVNS) has recently been suggested as a potential therapy for traumatic brain injury (TBI). We previously demonstrated that nVNS inhibits cortical spreading depolarization, the electrophysiological event underlying migraine aura, and is relevant to TBI. Our past work also suggests a role for interleukin-1 beta (IL-1β) in cognitive deficits after closed head injury (CHI) in mice.

View Article and Find Full Text PDF

There has been growing interest within the space industry for long-duration manned expeditions to the Moon and Mars. During deep space missions, astronauts are exposed to high levels of galactic cosmic radiation (GCR) and microgravity which are associated with increased risk of oxidative stress and endothelial dysfunction. Oxidative stress and endothelial dysfunction are causative factors in the pathogenesis of erectile dysfunction, although the effects of spaceflight on erectile function have been unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!