Knowledge of the biological effects of molecular hydrogen (H), hydrogen gas, is constantly advancing, giving a reason for the optimism in several healthcare practitioners regarding the management of multiple diseases, including socially significant ones (malignant neoplasms, diabetes mellitus, viral hepatitis, mental and behavioral disorders). However, mechanisms underlying the biological effects of H are still being actively debated. In this review, we focus on mast cells as a potential target for H at the specific tissue microenvironment level. H regulates the processing of pro-inflammatory components of the mast cell secretome and their entry into the extracellular matrix; this can significantly affect the capacity of the integrated-buffer metabolism and the structure of the immune landscape of the local tissue microenvironment. The analysis performed highlights several potential mechanisms for developing the biological effects of H and offers great opportunities for translating the obtained findings into clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300919 | PMC |
http://dx.doi.org/10.3390/ph16060817 | DOI Listing |
Biomacromolecules
December 2024
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
-Acetyl cysteine (NAC) is an essential molecule that boosts acute lung injury (ALI) defense via its direct antioxidant capability. Nevertheless, the therapeutic use of NAC is limited due to its poor bioavailability and short half-life. In this study, NAC was grafted to the polyurethane consisting of poly(propylene fumarate), poly(thioketal), and 1,6-hexamethylene diisocyanate (PFTU) to reduce excessive oxidative stress and inflammatory factors in ALI.
View Article and Find Full Text PDFAnal Chem
December 2024
State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China.
Spatial stable isotope tracing metabolic imaging is a cutting-edge technique designed to investigate tissue-specific metabolic functions and heterogeneity. Traditional matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) techniques often struggle with low coverage of low-molecular-weight (LMW) metabolites, which are often crucial for spatial metabolic studies. To address this, we developed a high-coverage spatial isotope tracing metabolic method that incorporates optimized matrix selection, sample preparation protocols, and enhanced post-ionization (MALDI2) techniques.
View Article and Find Full Text PDFElife
December 2024
Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
Chemotherapy is widely used to treat lung adenocarcinoma (LUAD) patients comprehensively. Considering the limitations of chemotherapy due to drug resistance and other issues, it is crucial to explore the impact of chemotherapy and immunotherapy on these aspects. In this study, tumor samples from nine LUAD patients, of which four only received surgery and five received neoadjuvant chemotherapy, were subjected to scRNA-seq analysis.
View Article and Find Full Text PDFDiscov Oncol
December 2024
School of Pharmacy, Shaoyang University, Shaoyang, 422000, Hunan, China.
Lung adenocarcinoma (LUAD) represents one of the most common subtypes of lung cancer with high rates of incidence and mortality, which contributes to substantial health and economic demand across the globe. Treatment today mainly consists of surgery, radiotherapy, and chemotherapy, but their efficacy in advanced stages is often suboptimal and emphasizes the clear need for new biomarkers and therapeutic targets. Using comprehensive bioinformatics analyses consisting of the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Human Protein Atlas (HPA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), immune infiltration analysis and functional enrichment analysis, and single-cell analysis, we examined the potential of keratin 18 (KRT18) as a candidate biomarker in advanced LUAD.
View Article and Find Full Text PDFElife
December 2024
Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.
Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!