Dengue fever remains a significant public health concern in many tropical and subtropical countries, and there is still a need for a system that can effectively combine global risk assessment with timely incidence forecasting. This research describes an integrated application called PICTUREE-Aedes, which can collect and analyze dengue-related data, display simulation results, and forecast outbreak incidence. PICTUREE-Aedes automatically updates global temperature and precipitation data and contains historical records of dengue incidence (1960-2012) and mosquito occurrences (1960-2014) in its database. The application utilizes a mosquito population model to estimate mosquito abundance, dengue reproduction number, and dengue risk. To predict future dengue outbreak incidence, PICTUREE-Aedes applies various forecasting techniques, including the ensemble Kalman filter, recurrent neural network, particle filter, and super ensemble forecast, which are all based on user-entered case data. The PICTUREE-Aedes' risk estimation identifies favorable conditions for potential dengue outbreaks, and its forecasting accuracy is validated by available outbreak data from Cambodia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301560 | PMC |
http://dx.doi.org/10.3390/pathogens12060771 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!