Betaine is a non-essential amino acid with proven functional properties and underutilized potential. The most common dietary sources of betaine are beets, spinach, and whole grains. Whole grains-such as quinoa, wheat and oat brans, brown rice, barley, etc.-are generally considered rich sources of betaine. This valuable compound has gained popularity as an ingredient in novel and functional foods due to the demonstrated health benefits that it may provide. This review study will provide an overview of the various natural sources of betaine, including different types of food products, and explore the potential of betaine as an innovative functional ingredient. It will thoroughly discuss its metabolic pathways and physiology, disease-preventing and health-promoting properties, and further highlight the extraction procedures and detection methods in different matrices. In addition, gaps in the existing scientific literature will be emphasized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302777PMC
http://dx.doi.org/10.3390/molecules28124824DOI Listing

Publication Analysis

Top Keywords

sources betaine
12
functional ingredient
8
betaine
6
betaine functional
4
ingredient metabolism
4
metabolism health-promoting
4
health-promoting attributes
4
attributes food
4
sources
4
food sources
4

Similar Publications

Hydrophobic association polymers containing various functional groups have a great deal of application potential as a self-thickening agent in carbonate acidification, while the improvement of their viscosification ability under high temperature conditions remains a significant challenge. A kind of betaine-type hydrophobic association polymer (PASD) intended for use as an acid thickener was synthesized through aqueous solution polymerization with sulfobetaine and a soluble hydrophobic monomer. The structure of PASD was characterized by FT-IR and H NMR.

View Article and Find Full Text PDF

Structural basis of a microbial trimethylamine transporter.

mBio

November 2024

MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.

Article Synopsis
  • Trimethylamine (TMA) is a naturally occurring compound found in the human gut and various ecosystems, and while it’s linked to cardiovascular issues in humans, many microbes use it as a nutrient source.
  • The TMA transporter, TmaT, was identified from a marine bacterium and is characterized as an Na/TMA symporter with high specificity for TMA, forming a homotrimer structure with a transport channel made of 12 transmembrane helices.
  • Using cryo-electron microscopy, the study reveals the structural details of TmaT and proposes a mechanism for how TMA is transported across cell membranes, providing new insights into TMA transport in biological systems.
View Article and Find Full Text PDF

Metabolomic profiles of stony coral species from the Dry Tortugas National Park display inter- and intraspecies variation.

mSystems

December 2024

School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA.

Unlabelled: Coral reefs are experiencing unprecedented loss in coral cover due to increased incidence of disease and bleaching events. Thus, understanding mechanisms of disease susceptibility and resilience, which vary by species, is important. In this regard, untargeted metabolomics serves as an important hypothesis-building tool enabling the delineation of molecular factors underlying disease susceptibility or resilience.

View Article and Find Full Text PDF

Hexavalent chromium is a toxic environmental pollutant that damages plants due to disruption of nutrient uptake, photosynthesis metabolism, and oxidative stress, which suppresses the growth and development of the plant. In this work, we have developed a betaine-modified carbon dot (BT@CD) sensor for monitoring Cr(VI) in water and plants. Fluorescent carbon dots have been synthesized using jamun juice () as the carbon source subjected to surface modification with betaine (BT@JCD).

View Article and Find Full Text PDF

Nexus of Soil Microbiomes, Genes, Classes of Carbon Substrates, and Biotransformation of Fluorotelomer-Based Precursors.

Environ Sci Technol

November 2024

Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States.

The unpredictable biodegradation of fluorotelomer (FT)-based per- and polyfluoroalkyl substances (PFAS) causes complicated risk management of PFAS-impacted sites. Here, we have successfully used redundancy analysis to link FT-based precursor biodegradation to key microbes and genes of soil microbiomes shaped by different classes of carbon sources: alcohols (C2-C4), alkanes (C6 and C8), an aromatic compound (phenol), or a hydrocarbon surfactant (cocamidopropyl betaine [CPB]). All the enrichments defluorinated fluorotelomer alcohols (:2 FtOH; = 4, 6, 8) effectively and grew on 6:2 fluorotelomer sulfonate (6:2 FtS) as a sulfur source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!