As fossil fuels gradually deplete, oil shale, one of the world's largest energy resources, has attracted much attention. Oil shale semi-coke (OSS) is the main byproduct of oil shale pyrolysis, which is produced in large quantities and causes severe environmental pollution. Therefore, there is an urgent need to explore a method suitable for the sustainable and effective utilization of OSS. In this study, OSS was used to prepare activated carbon by microwave-assisted separation and chemical activation, which was then applied in the field of supercapacitors. Raman, XRD, FT-IR, TEM, and nitrogen adsorption-desorption were adopted to characterize activated carbon. The results showed that ACF activated with FeCl-ZnCl/carbon as a precursor has larger specific surface area, suitable pore size, and higher degree of graphitization compared with the materials prepared by other activation methods. The electrochemical properties of several active carbon materials were also evaluated by CV, GCD, and EIS measurements. The specific surface area of ACF is 1478 m g, when the current density is 1 A g, the specific capacitance is 185.0 F g. After 5000 cycles of testing, the capacitance retention rate was as high as 99.5%, which is expected to provide a new strategy of converting waste products to low-cost activated carbon materials for high-performance supercapacitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301890 | PMC |
http://dx.doi.org/10.3390/molecules28124804 | DOI Listing |
Environ Geochem Health
January 2025
College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Biofuel Laboratory, Department of Energy, Tezpur University, Assam, 784028, India.
Agro-processing industries generate a substantial quantity of biomass wastes. Conversion of these wastes into valuable material could be profitable considering both environmental and economic aspects. Among various biomass conversion methods, hydrothermal conversion can be used for co-production of biofuel and other valuable materials like carbon quantum dots (CQDs) and activated carbons.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran.
In this research, fresh pistachio green shell as an agricultural waste was blended with activated carbon to study the adsorption process of mercury (II) from several aqueous solutions with various concentrations. Central Composite Design under Response Surface Methodology was statistically used to consider the independent variables involving pH, contact time, fresh pistachio green shell powder dosage, initial concentration of mercury (II) and activated carbon dosage effects on the mercury (II) removal. pH of 6.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.
Salinity stress disrupts water uptake and nutrient absorption, causing reduced photosynthesis, stunted growth, and decreased crop yields in plants. The use of indole acetic acid (IAA), arginine (AN), and mango fruit waste biochar (MFWB) can be effective methods to overcome this problem. Indole acetic acid (IAA) is a natural auxin hormone that aids cell elongation and division, thereby increasing plant height and branching.
View Article and Find Full Text PDFSci Rep
January 2025
China Academy of Safety Science and Technology, Beijing, 100012, China.
To investigate the effect of space tightness on inerting of liquid CO. Pottery jar liquor warehouse was selected as the research subject, numerical simulation was utilized to study the spatial inerting and CO migration and distribution under different space tightness degrees and injection flow rates. The results revealed that after injection into the space, CO distributed like an "umbrella", the CO protective layer undergoes a dynamic process of concentration increase and thickness enhancement, achieving upward accumulation and migration of the inert medium protective layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!